Advertisement

Inventiones mathematicae

, Volume 76, Issue 1, pp 93–120 | Cite as

Arithmeticity of the irreducible lattices in the semi-simple groups of rank greater than 1

  • G. A. Margulis
Article

Keywords

Irreducible Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  2. 2.
    Vinberg, E.B.: Rings of definition of dense subgroups of semi-simple linear groups. Math. USSR Izvestija5, 45–55 (1971)Google Scholar
  3. 3.
    Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. Proc. Symp. Pure Math., vol. 26, Amer. Math. Soc., Providence, RI, 1973, pp. 193–229Google Scholar
  4. 4.
    Furstenberg, H.: Equivariant measurable maps and representations of lattice subgroups. PreprintGoogle Scholar
  5. 5.
    Mostow, G.D.: Intersection of discrete subgroups with Cartan subgroups. J. Indian Math. Soc.34, 203–214 (1970)Google Scholar
  6. 6.
    Greenleaf, F.P.: Invariant means on topological groups. New York: Von Nostrand 1969Google Scholar
  7. 7.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. IHES27, 55–151 (1965)Google Scholar
  8. 8.
    Bourbaki, N.: Éléments de Mathematique. Intégration. Paris: HermannGoogle Scholar
  9. 9.
    Hopf, E.: Ergodentheorie. Berlin-Heidelberg-New York: Springer 1937Google Scholar
  10. 10.
    Borel, A., Tits, J.: Homomorphisms “abstraits” de groupes algébriques simples. Ann. Math.97, 499–571 (1973)Google Scholar
  11. 11.
    Halmos, P.: Measure theory. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  12. 12.
    Moore, C.C.: Ergodicity of flows on homogeneous spaces. Amer. J. Math.88, 154–178 (1966)Google Scholar
  13. 13.
    Margulis, G.A.: Arithmetic properties of discrete subgroups. Russian Mathematical Surveys24, 107–156 (1974)Google Scholar
  14. 14.
    Margulis, G.A.: Arithmeticity of non-uniform lattices in weakly non-compact groups. Functional Analysis Appl.8, 31–38 (1975)Google Scholar
  15. 15.
    Margulis, G.A.: Arithmeticity and finite-dimensional representations of uniform lattices. Funct. Analysis Appl.8, 258–259 (1974)Google Scholar
  16. 16.
    Margulis, G.A.: Discrete groups of motions of manifolds of non-positive curvature. Proc. Int. Congress Math., Vancouver, 1974, vol. 2, pp. 21–34, (Translation in: Amer. Math. Soc. Translations,109, 33–45 (1977))Google Scholar
  17. 17.
    Raghunathan, M.S.: Discrete subgroups andQ-structures on semi-simple groups. Proc. Intl. Coll. on discrete subgroups of Lie groups and applications to moduli (Bombay, 1973), pp. 225–321. Oxford Univ. Press, Oxford, 1975Google Scholar
  18. 18.
    Tits, J.: Travaux de Margulis sur les sous-groupes discretes de groupes de Lie. In: Sém. Bourbaki, 1975/1976, exp. 482. Lecture Notes in Mathematics, vol. 567, pp. 174–190. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  19. 19.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. A. Margulis
    • 1
  1. 1.Institute of Problems of Information TransmissionMoscowUSSR

Personalised recommendations