Inventiones mathematicae

, Volume 76, Issue 1, pp 41–54 | Cite as

Unirationality of the moduli spaces of curves of genus 11, 13 (and 12)

  • M. -C. Chang
  • Z. Ran
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbarello, E., Cornalba, M.: Su una congettura di Petri. Comment. Math. Helv.56, 1–38 (1981)Google Scholar
  2. 2.
    Arbarello, E., Sernesi, E.: The equation of a plane curve. Duke Math. J.46, 469–485 (1979)Google Scholar
  3. 3.
    Barth, W., Hulek, K.: Monads and moduli of vector bundles. Manuscr. Math.25, 323–347 (1978)Google Scholar
  4. 4.
    Chang, M.: Stable rank-2 reflexive sheaves onP 3 with smallc 2 and applications. Trans. A.M.S.: in press (1984)Google Scholar
  5. 5.
    Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math.67, 23–97 (1982)Google Scholar
  6. 6.
    Hartshorne, R.: Algebraic geometry. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 7.
    Hartshorne, R., Sols, I.: Stable rank 2 vector bundles onP 3 withc 1=−1,c 2=2. Crelle's J.325, 145–152 (1981)Google Scholar
  8. 8.
    Mori, S., Mukai, S.: Uniruledness of the moduli space of curves of genus 11. Algebraic Geometry: Proc. Franco-Japanese Conf., Lect. Notes, vo. 1016. Berlin-Heidelberg-New York: Springer 1983Google Scholar
  9. 9.
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on projective spaces. Boston: Birkhäuser 1980Google Scholar
  10. 10.
    Sernesi, E.: L'unirazionalità della varietà dei moduli delle curvi di genere dodici. Ann. Sc. Norm. Sup.-Pisa (IV)VIII, 405–439 (1981)Google Scholar
  11. 11.
    Sernesi, E.: On the existence of certain families of curves. PreprintGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. -C. Chang
    • 1
  • Z. Ran
    • 2
  1. 1.Mathematics DepartmentCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Mathematics DepartmentUniversity of ChicagoChicagoUSA

Personalised recommendations