Inventiones mathematicae

, Volume 76, Issue 3, pp 455–468

Heegaard genus of closed orientable Seifert 3-manifolds

  • M. Boileau
  • H. Zieschang
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bi] Birman, J.S.: Braids, links, and mapping class groups. Ann. Math. Studies 82. Princeton, N.J.: Princeton University Press 1974Google Scholar
  2. [BiH] Birman, J.S., Hilden, H.: Heegaard splittings and branched coverings ofS 3. Trans. Amer. Math. Soc.213, 315–352 (1975)Google Scholar
  3. [BZ 1] Boileau, M., Zieschang, H.: Genre de Heegaard d'une variétè de dimension 3 et générateurs de son groupe fondamental. C.R. Acad. Sc. Paris296 (Série I) 925–928 (1983)Google Scholar
  4. [BZ 2] Boileau, M., Zieschang, H.: Nombre de ponts et générateurs méridiens des entrelacs de Montesinos et de Seifert, To appearGoogle Scholar
  5. [Bo] Bonahon, F.: Involutions et fibrés de Seifert dans les varietés de dimension 3. These de 3ème cycle, Orsay 1979Google Scholar
  6. [BuM] Burde, G., Murasugi, K.: Links and Seifert fibre spaces. Duke Math. J.37, 89–93 (1970)Google Scholar
  7. [BuZ] Burde, G., Zieschang, H.: Knots. Berlin: de Gruyter. To appearGoogle Scholar
  8. [De] Dehn, M.: Über Abbildungen. Mat. Tidsskrift B 1939, 25–48Google Scholar
  9. [Ha 1] Haken, W.: Various aspects of the 3-dimensional Poincaré problem. In: Topology of manifolds, pp. 140–152. Chicago: Markham 1970Google Scholar
  10. [Ha 2] Haken, W.: Some results on surfaces in 3-manifolds. Studies in Modern Topology, M.A.A. studies in Math. vol.5, 39–98 (1968)Google Scholar
  11. [Li] Lickorish, W.B.R.: A finite set of generators for the homeotopy group of a 2-manifold. Proc. Camb. Phil. Soc.60, 769–778 (1964); Proc. Camb. Phil. Soc.62, 679–681 (1966)Google Scholar
  12. [Mo 1] Montesinos, J.M.: Variedades de Seifert que son recubridores ciclicos ramificados de dos hojas. Bol. Mat. Mexicana18, 1–32 (1973)Google Scholar
  13. [Mo 2] Montesinos, J.M.: Revêtements ramifiés de noeuds, espaces fibrés de Seifert et scindement de Heegaard. Prepublication Orsay 1978Google Scholar
  14. [Oc] Ochiai, M.: Heegaard splittings ofF×S 1. Yokohama Math. J.25, 109–112 (1977)Google Scholar
  15. [Or] Orlik, P.: Seifert Manifolds. Lecture Notes in Math. vol. 291. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  16. [OVZ] Orlik, P., Vogt, E., Zieschang, H.: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten. Topology6, 49–64 (1967)Google Scholar
  17. [OZ] Osborne, R.P., Zieschang, H.: Primitives in the free group on two generators. Invent. math.63, 17–24 (1981)Google Scholar
  18. [PRZ] Peczynski, N., Rosenberger, G., Zieschang, H.: Über Erzeugende ebener diskontinuierlicher Gruppen. Invent. math.29, 161–180 (1975)Google Scholar
  19. [Ra] Rassias, G.M.: On the genus problem of 3-dimensional manifolds and the Poincaré conjecture. Bull. Soc. Roy. Sci. Liege No.3 (4), 125–128 (1981)Google Scholar
  20. [Re] Reidemeister, K.: Über Heegaard Diagramme. Abh. Math. Sem. Univ. Hamburg25, 140–145 (1961/62)Google Scholar
  21. [Se] Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta Math.60, 147–238 (1933)Google Scholar
  22. [Si] Siebenmann, L.: Introduction aux espaces fibrés de Seifert. Notes multicopiés, Orsay 1977–1978Google Scholar
  23. [Th] Thurston, W.P.: The geometry and topology of 3-manifolds, ch. 13. Mimeographed Notes Priceton University 1976–1979Google Scholar
  24. [TOc] Takahashi, M., Ochiai, M.: Heegaard diagrams of torus bundles overS 1. Comment. Math. Univ. Sancti Pauli31, 63–69 (1982)Google Scholar
  25. [To] Tollefson, J.L.: Involutions of Seifert fiber spaces. Pacific J. Math.74, 519–529 (1978)Google Scholar
  26. [Vi] Viro, O.: Linkings, two sheeted branched coverings and braids. Math. USSR Sbornik16, 223–235 (1972)Google Scholar
  27. [Wa 1] Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math.87, 56–88 (1968)Google Scholar
  28. [Wa 2] Waldhausen, F.: Heegaard-Zerlegungen der 3-Sphäre. Topology7, 195–203 (1968)Google Scholar
  29. [Wa 3] Waldhausen, F.: Some problems on 3-manifolds. Proc. Symposia in Pure Math.32, (part. 2) 313–322 (1978)Google Scholar
  30. [Zi] Zieschang, H.: Classification of Montesions knots. Lecture Notes in Mathematics, in press. (Topology-Conference in Leningrad 1982)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Boileau
    • 1
  • H. Zieschang
    • 2
  1. 1.Section de MathématiquesGenève 24Switzerland
  2. 2.Institut für MathematikRuhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations