Inventiones mathematicae

, Volume 77, Issue 2, pp 353–366 | Cite as

Symplectic diffeomorphisms and the flux homomorphism

  • Dusa McDuff


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antonelli, P., Burghelea, D., Kahn, P.: The non-finite homotopy type of some diffeomorphism groups. Topology11, 1–49 (1972)Google Scholar
  2. 2.
    Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv.53, 174–227 (1978)Google Scholar
  3. 3.
    Banyaga, A.: On the geometry of the Calabi invariant, I. Preprint, 1983Google Scholar
  4. 4.
    Banyaga, A., Urwin, R.: On the cohomology of the diffeomorphism group. Proceedings of the IUTAM-ISIMM, Torino 1982Google Scholar
  5. 5.
    Calabi, E.: Construction and properties of some 6-dimensional almost complex manifolds. Trans. Amer. Math. Soc.87, 407–438 (1958)Google Scholar
  6. 6.
    Calabi, E.: On the group of automorphisms of a symplectic manifold. In: Problems in Analysis. Princeton Univ. Press, pp. 1–26 (1970)Google Scholar
  7. 7.
    Cheeger, J., Goresky, M., MacPherson, R.:L 2-cohomology and intersection homology of singular algebraic varieties. In: Annals of Math. Study102, P.U.P. (1980) 303–340Google Scholar
  8. 8.
    Gottlieb, D.: Applications of bundle map theory. Trans. Amer. Math. Soc.171, 23–50 (1972)Google Scholar
  9. 9.
    Haefliger, A.: Lectures on the theorem of Gromov. Lecture Notes of Mathematics, Vol. 209, pp. 128–141. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  10. 10.
    Ismagilov, R.: On the group of volume-preserving diffeomorphisms. Isvestiya Akad. Nauk.44, 831–867 (1980)Google Scholar
  11. 11.
    Milnor, J.: On spaces having the homotopy type of aCW complex. Trans. Amer. Math. Soc.90, 272–280 (1959)Google Scholar
  12. 12.
    Moser, J.: On the volume elements on manifolds. Trans. Amer. Math. Soc.120, 280–296 (1965)Google Scholar
  13. 13.
    Palais, R.: Homotopy theory of infinite dimensional manifolds. Topology5, 1–16 (1966)Google Scholar
  14. 14.
    Thurston, W.: On the structure of the group of volume-preserving diffeomorphisms. Preprint, c. 1973Google Scholar
  15. 15.
    Thurston, W.: Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc.55, 467–468 (1976)Google Scholar
  16. 16.
    Weinstein, A.: Fat bundles and symplectic manifolds. Advances in Math.37, 234–250 (1980)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Dusa McDuff
    • 1
  1. 1.Department of MathematicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations