Inventiones mathematicae

, Volume 73, Issue 3, pp 349–366 | Cite as

Endlichkeitssätze für abelsche Varietäten über Zahlkörpern

  • G. Faltings
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arakelov, S.: Families of curves with fixed degeneracies. Math. USSR Izvestija5, 1277–1302 (1971)Google Scholar
  2. 2.
    Arakelov, S.: An Intersection theory for divisors on an arithmetic surface. Math. USSR Izvestija8, 1167–1180 (1974)Google Scholar
  3. 3.
    Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442–528 (1966)Google Scholar
  4. 4.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of a given genus. Publ. math. I.H.E.S.36, 75–110 (1969)Google Scholar
  5. 5.
    Faltings, G.: Calculus on arithmetic surfaces. Eingereicht bei Ann. of Math.Google Scholar
  6. 6.
    Faltings, G.: Arakelov's theorem for abelian varieties. Invent. math.73, 337–347 (1983)Google Scholar
  7. 7.
    Moret-Bailly, L.: Variétés abéliennes polarisées sur les corps de fonctions. C.R. Acad. Sc. Paris296, 267–270 (1983)Google Scholar
  8. 8.
    Namikawa, Y.: Toroidal compactification of Siegel spaces. Lecture Notes in Mathematics, vol. 812. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  9. 9.
    Parshin, A.N.: Algebraic curves over function fields I. Math. USSR Izvestija2, 1145–1170 (1968)Google Scholar
  10. 10.
    Raynaud, M.: Schémas en groupes de type (p, ...,p). Bull. Soc. Math. France102, 241–280 (1974)Google Scholar
  11. 11.
    Szpiro, L.: Sur le théorème de rigidité de Parsin et Arakelov. Astérisque64, 169–202 (1979)Google Scholar
  12. 12.
    Szpiro, L.: Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque86 (1981)Google Scholar
  13. 13.
    Tate, J.:p-divisible groups. Proceedings of a conference on local fields, Driebergen 1966, pp. 158–183, Berlin-Heidelberg-New York: Springer 1967Google Scholar
  14. 14.
    Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. math.2, 134–144 (1966)Google Scholar
  15. 15.
    Zarhin, J.G.: Isogenies of abelian varieties over fields of finite characteristics. Math. USSR Sbornik24, 451–461 (1974)Google Scholar
  16. 16.
    Zarhin, J.G.: A remark on endomorphisms of abelian varieties over function fields of finite characteristics. Math. USSR Izvestija8, 477–480 (1974)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Faltings
    • 1
  1. 1.Fachbereich MathematikBergische Universitäts-Gesamthochschule WuppertalWuppertal 1Bundesrepublik Deutschland

Personalised recommendations