Advertisement

Inventiones mathematicae

, Volume 73, Issue 3, pp 337–347 | Cite as

Arakelov's theorem for abelian varieties

  • G. Faltings
Article

Keywords

Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arakelov, S.: Families of curves with fixed degeneracy. Izv. Akad. Nauk.35, 1269–1293 (1971)Google Scholar
  2. 2.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactification of Locally Symmetric Varieties. Math. Sci. Press, Brooklin (1975)Google Scholar
  3. 3.
    Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math.84, 442–528 (1966)Google Scholar
  4. 4.
    Deligne, P.: Théorie de Hodge II. Publ. Math.40, 5–58 (1971)Google Scholar
  5. 5.
    Mumford, D.: Hirzebruch's proportionality theorem in the non-compact case. Invent. math.42, 239–272 (1977)Google Scholar
  6. 6.
    Schmid, W.: Variation of hodge structure: The singularities of the period mapping. Invent. math.22, 211–319 (1973)Google Scholar
  7. 7.
    Szpiro, L.: Sur le theorème de rigidité d'Arakelov et Parsin. Astérisque,64, 169–202 (1979)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Faltings
    • 1
  1. 1.Fachbereich MathematikUniversität-Gesamthochschule WuppertalWuppertal 1Germany

Personalised recommendations