Mathematische Annalen

, Volume 249, Issue 1, pp 1–15 | Cite as

Zeta functions attached to finite general linear groups

  • I. G. Macdonald
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deligne, P.: Formes modulaires et réprésentations de GL(2). Lecture Notes in Mathematics 349, pp. 55–105. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  2. 2.
    Deligne, P.: Les constantes des equations functionnelles des functionsL. Lecture Notes in Mathematics 349, pp. 501–597. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  3. 3.
    Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lecture Notes in Mathematics 260. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  4. 4.
    Green, J.A.: The characters of the finite general linear groups. Trans, Amer. Math. Soc.80, 402–447 (1955)Google Scholar
  5. 5.
    Karkar, M.T., Green, J.A.: A theorem on the restriction of group characters and its application to the character theory of SL (n, q). Math. Ann.215, 131–134 (1975)Google Scholar
  6. 6.
    Kawanaka, N.: On the irreducible characters of the finite unitary groups. Proc. Japan Acad.52, 95–97 (1976)Google Scholar
  7. 7.
    Kondo, T.: On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Japan15, 244–255 (1963)Google Scholar
  8. 8.
    Lamprecht, E.: Struktur und Relationen allgemeiner Gaußscher Summen in endlichen Ringen. I, II. J. Reine Angew. Math.197, 1–48 (1957)Google Scholar
  9. 9.
    Lehrer, G.I.: The characters of the finite special linear groups. J. Algebra26, 564–583 (1973)Google Scholar
  10. 10.
    Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: University Press 1979Google Scholar
  11. 11.
    Springer, T.A.: The zeta function of a cuspidal representation of a finite group GLn (k), in Lie groups and their representations. Summer School of the Bolyai János Math. Soc. London: Hilger 1975Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • I. G. Macdonald
    • 1
  1. 1.Queen Mary CollegeUniversity of LondonLondonUK

Personalised recommendations