Numerische Mathematik

, Volume 3, Issue 1, pp 381–397 | Cite as

Numerical integration of ordinary differential equations based on trigonometric polynomials

  • Walter Gautschi


Differential Equation Ordinary Differential Equation Mathematical Method Trigonometric Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Antosiewicz, H. A., andW. Gautschi: Numerical methods in ordinary differential equations, Chap. 9 of “Survey of numerical analysis” (ed.J. Todd). New York-Toronto-London: McGraw-Hill Book Co. (in press).Google Scholar
  2. [2]
    Brock, P., andF. J. Murray: The use of exponential sums in step by step integration. Math. Tables Aids Comput.6, 63–78 (1952).Google Scholar
  3. [3]
    Collatz, L.: The numerical treatment of differential equations, 3rd ed. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  4. [4]
    Dennis, S. C. R.: The numerical integration of ordinary differential equations possessing exponential type solutions. Proc. Cambridge Philos. Soc.56, 240–246 (1960).Google Scholar
  5. [5]
    Urabe, M., andS. Mise: A method of numerical integration of analytic differential equations. J. Sci. Hiroshima Univ., Ser. A,19, 307–320 (1955).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Walter Gautschi
    • 1
  1. 1.Mathematics PanelOak Ridge National LaboratoryOak Ridge

Personalised recommendations