Numerische Mathematik

, Volume 3, Issue 1, pp 257–264 | Cite as

Absolute and monotonic norms

  • F. L. Bauer
  • J. Stoer
  • C. Witzgall


Mathematical Method Monotonic Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bauer, F. L., andC. T. Fike: Norms and Exclusion Theorems. Numer. Math.2, 137–141 (1960).Google Scholar
  2. [2]
    —, andA. S. Householder: Moments and Characteristic Roots. Numer. Math.2, 42–53 (1960).Google Scholar
  3. [3]
    Bauer, F. L., andA. S. Householder: Absolute Norms and Characteristic Roots. (To appear.)Google Scholar
  4. [4]
    Bauer, F. L.: On the Field of Values Subordinate to a Norm. (To appear.)Google Scholar
  5. [5]
    Birkhoff, G.: Lattice ordered Groups. Ann. of Math.43, 298–331 (1942).Google Scholar
  6. [6]
    Fiedler, M., andV. Ptak: Some Inequalities for the Spectrum of a Matrix. Mat.-Fyz. Časopis. Slovensk. Akad. Vied.10, 148–166 (1960).Google Scholar
  7. [7]
    Freudenthal, H.: Über teilweise geordnete Moduln. Proceedings Amsterdam Academy39, 641–651 (1936).Google Scholar
  8. [8]
    Householder, A. S.: The Approximate Solution of Matrix Problems. J. Assoc. Comput. Math.5, 205–243 (1958).Google Scholar
  9. [9]
    Kantorovic, L.: Lineare halb-geordnete Räume. Rec. Math., (Mat. Sbornik)2, 121–165 (1937).Google Scholar
  10. [10]
    Neumann, J. v.: Some Matrix-Inequalities and Metrization of Matrix-Space. Bull. Inst. Math. Mech. Univ. Tomsk.1, 286–299 (1937).Google Scholar
  11. [11]
    Ostrowski, A. M.: Über Normen von Matrizen. Math. Z.63, 2–18 (1955).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • F. L. Bauer
    • 1
  • J. Stoer
    • 1
  • C. Witzgall
    • 1
  1. 1.Institut für angewandte Mathematik der Universität Mainz

Personalised recommendations