Numerische Mathematik

, Volume 3, Issue 1, pp 147–156

Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods

Part I
  • Gene H. Golub
  • Richard S. Varga


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arms, R. J., L. D. Gates andB. Zondek: A method of block iteration. Journal Soc. Indust. Appl. Math.4, 220–229 (1956).Google Scholar
  2. [2]
    Blair, A., N. Metropolis, J. v. Neumann, A. H. Taub andM. Tsingou: A study of a numerical solution of a two-dimensional hydrodynamical problem. Math. Tables and Other Aids to Computation13, 145–184 (1959).Google Scholar
  3. [3]
    Cuthill, Elizabeth H., andRichard S. Varga: A method of normalized block iteration. Journal Assoc. Computing Mach.6, 236–244 (1959).Google Scholar
  4. [4]
    Flanders, Donald A., andGeorge Shortley: Numerical determination of fundamental modes. Journal of Applied Physics21, 1326–1332 (1950).Google Scholar
  5. [5]
    Forsythe, G. E.: Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.59, 299–329 (1953).Google Scholar
  6. [5′]
    Frank, Werner: Solution of linear systems byRichardson's method. Journal Assoc. Computing Mach.7, 274–286 (1960).Google Scholar
  7. [6]
    Frankel, Stanley P.: Convergence rates of iterative treatments of partial differential equations. Math. Tables Aids Comput.4, 65–75 (1950).Google Scholar
  8. [7]
    Golub, Gene H.: The use of Chebyshev matrix polynomials in the iterative solution of linear equations compared with the method of successive overrelaxation. Doctoral Thesis, University of Illinois, 1959.Google Scholar
  9. [8]
    Heller, J.: Simultaneous, successive and alternating direction iterative methods. Journal Soc. Indust. Appl. Math.8, 150–173 (1960).Google Scholar
  10. [9]
    Householder, A. S.: The approximate solution of matrix problems. Journal Assoc. Computing Mach.5, 205–243 (1958).Google Scholar
  11. [10]
    Kahan, W.: Gauss-Seidel methods of solving large systems of linear equations. Doctoral Thesis, University of Toronto, 1958.Google Scholar
  12. [11]
    Lanczos, Cornelius: Solution of systems of linear equations by minimized iterations. Journal Research Nat. Bureau of Standards49, 33–53 (1952).Google Scholar
  13. [12]
    Parter, Seymour V.: On two-line iterative methods for the Laplace and biharmonic difference equations. Numerische Mathematik1, 240–252 (1959).Google Scholar
  14. [13]
    Riley, James D.: Iteration procedures for the dirichlet Difference problem. Math. Tables Aids Comput.8, 125–131 (1954).Google Scholar
  15. [14]
    Romanovsky, V.: Recherches sur les chaînes deMarkoff. Acta Math.66, 147–251 (1936).Google Scholar
  16. [15]
    Sheldon, J. W.: On the spectral norms of several iterative processes. Journal Assoc. Computing Mach.6, 494–505 (1959).Google Scholar
  17. [16]
    Stiefel, Eduard L.: Kernel polynomials in linear algebra and their numerical applications. National Bureau of Standards Applied Math. Series 49, U.S. Government Printing Office, Washington, D. C. 1958, p. 1–22.Google Scholar
  18. [17]
    Todd, John: The condition of a certain matrix. Proc. Cambridge Philos. Soc.46, 116–118 (1950).Google Scholar
  19. [18]
    Varga, Richard S.: A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. Journal Soc. Indust. Appl. Math.5, 39–46 (1957).Google Scholar
  20. [19]
    Varga, Richard S.: Numerical solution of the two-group diffusion equation inx−y geometry. IRE Trans. of the Professonal Group on Nuclear Science, N.S.4, 52–62 (1957).Google Scholar
  21. [20]
    Varga, Richard S.:p-cyclic matrices: a generalization of the Young-Frankel successive overrelaxation scheme. Pacific Journal of Math.9, 617–628 (1959).Google Scholar
  22. [21]
    Varga, Richard S.: Factorization and normalized iterative methods. Boundary Problems in Differential Equations, the University of Wisconsin Press, Madison 1960, p. 121–142.Google Scholar
  23. [22]
    Wachspressm E. L., P. M. Stone andC. E. Lee: Mathematical techniques in two-space-dimension multigroup calculations. Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, United Nations, Geneva, 1958, volume 16, p. 483–488.Google Scholar
  24. [23]
    Wielandt, Helmut: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642–648 (1950).Google Scholar
  25. [24]
    Young, David: Iterative methods for solving partial differences equations of elliptic type. Doctoral Thesis, Harvard University, 1950.Google Scholar
  26. [25]
    Young, David: OnRichardson's method for solving linear systems with positive definite matrices. Journal Math. and Physics32, 243–255 (1953).Google Scholar
  27. [26]
    Young, David: Iterative methods for solving partial difference equations of elliptic type. Trans. Amer. Math. Soc.76, 92–111 (1954).Google Scholar
  28. [27]
    Young, David: On the solution of linear systems by iteration. Proceedings of the Sixth Symposium in Applied Math., p. 283–298. New York: McGraw-Hill 1956.Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Gene H. Golub
    • 1
    • 2
  • Richard S. Varga
    • 1
    • 2
  1. 1.Space Technology Laboratories, Inc.Los Angeles
  2. 2.Case Institute of TechnologyCleveland 6

Personalised recommendations