Numerische Mathematik

, Volume 63, Issue 1, pp 503–520 | Cite as

Multilevel iterative methods for mixed finite element discretizations of elliptic problems

  • Panayot S. Vassilevski
  • Junping Wang
Article

Summary

For solving second order elliptic problems discretized on a sequence of nested mixed finite element spaces nearly optimal iterative methods are proposed. The methods are within the general framework of the product (multiplicative) scheme for operators in a Hilbert space, proposed recently by Bramble, Pasciak, Wang, and Xu [5,6,26,27] and make use of certain multilevel decomposition of the corresponding spaces for the flux variable.

Mathematics Subject Classification (1991)

65N30 65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsson, O. (1979): Preconditioning indefinite problems by regularization. SIAM J. Numer. Anal.16, 58–69Google Scholar
  2. 2.
    Axelsson, O., Vassilevski, P.S., (1990): Algebraic multilevel preconditioning methods, II. SIAM J. Numer. Anal.27, 1569–1589Google Scholar
  3. 3.
    Babuška, I. (1973): The finite element method with Lagrangian multipliers. Numer. Math.20, 179–192Google Scholar
  4. 4.
    Bercovier, M. (1978): Perturbation of mixed variational problems-application to mixed finite element methods. R.A.I.R.O.12, 211–236Google Scholar
  5. 5.
    Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J. (1991): Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comput.57, 1–22Google Scholar
  6. 6.
    Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J. (1991): Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput.57, 23–46Google Scholar
  7. 7.
    Brezzi, F. (1974): On the existence, uniqueness, and approximations of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. Anal. Numer.2, 129–151Google Scholar
  8. 8.
    Brezzi, F., Douglas, J., jr., Fortin, M., Marini, L.D. (1987): Efficient rectangular mixed finite elements in two and three space variables. R.A.I.R.O., Modél. Math. Anal. Numér.21, 581–604Google Scholar
  9. 9.
    Brezzi, F., Douglas, J., Jr., Marini, L.D. (1985): Two families of mixed finite elements for second order elliptic problems. Numer. Math.47, 217–235Google Scholar
  10. 10.
    Cai, Z., Goldstein, C.I., Pasciak, J.E. (1991): Multilevel iteration for mixed finite element systems with penalty. SISSC, to appearGoogle Scholar
  11. 11.
    Douglas, J., Jr., Roberts, J.E. (1985): Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput.45, 39–52Google Scholar
  12. 12.
    Douglas, J., Jr., Wang, J. (1992): A new family of mixed finite element spaces over rectangles. SubmittedGoogle Scholar
  13. 13.
    Ewing, R.E., Lazarov, R.D., Vassilevski, P.S. (1991): Mixed finite element solutions of second order elliptic problems on grids with regular local refinement. Proceedings of Domain Decomposition Conference. Moscow, 1990, SIAM, Philadelphia, pp. 206–212Google Scholar
  14. 14.
    Ewing, R.E., Pasciak, J.E., Vassilevski, P.S. (1992): Hierarchical multilevel methods for mixed finite element systems with penalty. In preparationGoogle Scholar
  15. 15.
    Ewing, R.E., Wang, J. (1992): Analysis of the Schwarz algorithm for mixed finite element methods. R.A.I.R.O. (to appear)Google Scholar
  16. 16.
    Ewing, R.E., Wang, J. (1992): Analysis of multilevel decomposition iterative methods for mixed finite element methods. R.A.I.R.O. (submitted)Google Scholar
  17. 17.
    Fortin, M. (1977): An analysis of the convergence of mixed finite element methods. R.A.I.R.O., Modél. Math. Anal. Numér.11, 341–355Google Scholar
  18. 18.
    Girault, V., Raviart, P.-A. (1986): Finite Element Methods for Navier-Stokes Equations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Hackbusch, W. (1985): Multigrid Methods and Applications. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. 20.
    Mandel, J., McCormick, S., Bank, R. (1987): Variational multigrid theory. In: S. McCormick, ed., Multigrid Methods. SIAM, Philadelphia, Penn., pp. 131–178Google Scholar
  21. 21.
    Mathew, T.F. (1989): Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems. Ph.D. Thesis, Courant Institute. New YorkGoogle Scholar
  22. 22.
    Raviart, P.-A., Thomas, J.-M. (1977): A mixed finite element method for second order elliptic problems. In: Mathematical Aspects in the Finite Element Methods. Lecture Notes in Mathematics606. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Vassilevski, P.S. (1992): HybridV-cycle algebraic multilevel preconditioners. Math. Comput.58, 489–512Google Scholar
  24. 24.
    Vassilevski, P.S. (1990): Optimal order multilevel domain decomposition preconditioners. PreprintGoogle Scholar
  25. 25.
    Wang, J. (1992): Convergence analysis without regularity assumptions for multigrid methods based on SOR smoothing. SIAM J. Numer. Anal. (to appear)Google Scholar
  26. 26.
    Wang, J. (1990): Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods. I. Selfadjoint and positive definite elliptic problems. EORI, University of Wyoming, Preprint no. 24. R. Beauwens, P.N. de Groen, eds., Proceedings of the IMACS International SymposiumGoogle Scholar
  27. 27.
    Wang, J. (1990): Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods. II. Nonselfadjoint and indefinite elliptic problems. EORI, University of Wyoming, Preprint no. 27Google Scholar
  28. 28.
    Yserentant, H. (1986): On the multilevel splitting of finite element spaces. Numer. Math.49, 379–412Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Panayot S. Vassilevski
    • 1
  • Junping Wang
    • 1
  1. 1.Department of MathematicsUniversity of WyomingLaramieUSA

Personalised recommendations