Advertisement

Numerische Mathematik

, Volume 63, Issue 1, pp 345–356 | Cite as

H-Splittings and two-stage iterative methods

  • Andreas Frommer
  • Daniel B. Szyld
Article

Summary

Convergence of two-stage iterative methods for the solution of linear systems is studied. Convergence of the non-stationary method is shown if the number of inner iterations becomes sufficiently large. TheR1-factor of the two-stage method is related to the spectral radius of the iteration matrix of the outer splitting. Convergence is further studied for splittings ofH-matrices. These matrices are not necessarily monotone. Conditions on the splittings are given so that the two-stage method is convergent for any number of inner iterations.

Mathematics Subject Classification (1991)

65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alefeld, G. (1982): On the convergence of the symmetric SOR method for matrices with red-black ordering. Numer. Math.39, 113–117Google Scholar
  2. 2.
    Alefeld, G., Varga, R.S. (1976): Zur Konvergenz des symmetrischen Relationsverfahrens. Numer. Math.25, 291–295Google Scholar
  3. 3.
    Axelsson, O. (1977): Solution of linear systems of equations: Iterative methods. In: V.A. Baker, ed., Sparse matrix techniques — Copenhagen 1976. Lecture Notes in Mathematics 572. Springer, Berlin Heidelberg New York, pp. 1–15Google Scholar
  4. 4.
    Beawens, R. (1979): Factorization iterative methods,M-operators andH-operators. Numer. Math.31, 335–357; Errata in Numer. Math.49, 457 (1986)Google Scholar
  5. 5.
    Berman, A., Plemmons, J. (1979): Nonnegative matrices in the mathematical sciences. Academic Press, New YorkGoogle Scholar
  6. 6.
    Collatz, L. (1952): Aufgaben monotoner Art. Arch. Math.3, 366–376Google Scholar
  7. 7.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T. (1982): Inexact Newton methods. SIAM J. Numer. Anal.19, 400–408Google Scholar
  8. 8.
    Fan, K. (1958): Topological proofs of certain theorems on matrices with non-negative elements. Monatshefte für Mathematik62, 219–237Google Scholar
  9. 9.
    Frommer, A., Mayer, G. (1989): Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl.119, 141–152Google Scholar
  10. 10.
    Golub, G.H., Overton, M.L. (1982): Convergence of a two-stage Richardson iterative procedure for solving systems of linear equations. In: G.A. Watson, ed., Numerical analysis (Proceedings of the Ninth Biennial Conference, Dundee, Scotland, 1981). Lecture Notes in Mathematics 912, Springer, Berlin Heidelberg New York, pp. 128–139Google Scholar
  11. 11.
    Golub, G.H., Overton, M.L. (1988): The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems. Numer. Math.53, 571–593Google Scholar
  12. 12.
    Johnson, C.R., Bru, R. (1990): The spectral radius of a product of nonnegative matrices. Linear Algebra Appl.141, 227–240Google Scholar
  13. 13.
    Krishna, L.B. (1983): Some results on unsymmetric successive overrelaxation method. Numer. Math.42, 155–160Google Scholar
  14. 14.
    Lanzkron, P.J., Rose, D.J., Szyld, D.B. (1991): Convergence of nested classical iterative methods for linear systems. Numer. Math.58, 685–702Google Scholar
  15. 15.
    Marek, I., Szyld, D.B. (1990): Comparison theorems for weak splittings of bounded operators. Numer. Math.58, 387–397Google Scholar
  16. 16.
    Marek, I., Szyld, D.B. (1990): Splittings ofM-operators: Irreducibility and the index of the iteration operator. Numer. Funct. Anal. Optimization,11, 529–553Google Scholar
  17. 17.
    Mayer, G. (1987): Comparison theorems for iterative methods based on strong splittings. SIAM J. Numer. Anal.24, 215–227Google Scholar
  18. 18.
    Moré, J.J. (1971): Global convergence of Newton-Gauss-Seidel methods. SIAM J. Numer. Anal.8, 325–336Google Scholar
  19. 19.
    Neumaier, A. (1984): New techniques for the analysis of linear interval equations. Linear Algebra Appl.58, 273–325Google Scholar
  20. 20.
    Neumaier, A. (1986): On the comparison ofH-matrices withM-matrices. Linear Algebra Appl.83, 135–141Google Scholar
  21. 21.
    Neumaier, A. (1990): Interval methods for systems of equations. Cambridge University Press, Cambridge New YorkGoogle Scholar
  22. 22.
    Neumaier, A., Varga, R.S. (1984): Exact convergence and divergence domains for the symmetric successive overrelaxation iterative (SSOR) method applied toH-matrices. Linear Algebra Appl.58, 261–272Google Scholar
  23. 23.
    Neumann, M. (1984): On bounds for the convergence of the SSOR method forH-matrices. Linear Multilinear Algebra15, 13–21Google Scholar
  24. 24.
    Nichols, N.K. (1973): On the convergence of two-stage iterative processes for solving linear equations. SIAM J. Numer. Anal.10, 460–469Google Scholar
  25. 25.
    Ortega, J.M. (1972): Numerical analysis. A second course. Academic Press, New York (reprinted by SIAM, Philadelphia, 1990)Google Scholar
  26. 26.
    Ortega, J.M., Rheinboldt, W.C. (1970): Iterative solution of nonlinear equations in several variables. Academic Press, New York LondonGoogle Scholar
  27. 27.
    Ostrowski, A.M. (1937): Über die Determinanten mit überwiegender Hauptdiagonale. Comentarii Mathematici Helvetici10, 69–96Google Scholar
  28. 28.
    Ostrowski, A.M. (1956): Determination mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationprozessen. Comentarii Mathematici Helvetici30, 175–210Google Scholar
  29. 29.
    Rheinboldt, W.C., Vandergraft, J.S. (1973): A simple approach to the Perron-Frobenius theory for positive operators on general partially-ordered finite-dimensional linear spaces. Math. Comput.27, 139–145Google Scholar
  30. 30.
    Robert, F., Charnay, M., Musy, F. (1975): Itérations chaotiques série-parallèle pour des équations non-linéaires de point fixe. Aplikace Matematiky20, 1–38Google Scholar
  31. 31.
    Robert, F., (1969): Blocs-H-matrices et convergence des méthodes itératives classiques par blocs. Linear Algebra Appl.2, 223–265Google Scholar
  32. 32.
    Schneider, H. (1984): Theorems onM-splittings of a singularM-matrix which depend on graph structure. Linear Algebra Appl.58, 407–424Google Scholar
  33. 33.
    Sherman, A.H. (1978): On Newton-iterative methods for the solution of systems of nonlinear equations. SIAM J. Numer. Anal.15, 755–771Google Scholar
  34. 34.
    Szyld, D.B., Jones, M.T. (1992): Two-stage and multisplitting methods for the parallel solution of linear systems. SIAM J. Matrix Anal. Appl.13, 671–679Google Scholar
  35. 35.
    Szyld, D.B., Widlung, O.B. (1992): Variational analysis of some conjugate gradient methods. East-West J. Numer. Anal.1, 1–25Google Scholar
  36. 36.
    Varga, R.S. (1960): Factorization and normalized iterative methods. In: R.E. Langer, ed., Boundary problems in differential equations. The University of Wisconsin Press, Wisconsin, pp. 121–142Google Scholar
  37. 37.
    Varga, R.S. (1962): Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  38. 38.
    Varga, R.S. (1976): On recurring theorems on diagonal dominance. Linear Algebra Appl.13, 1–9Google Scholar
  39. 39.
    Varga, R.S., Saff, E.B., Mehrmann, V. (1980): Incomplete factorizations of matrices and connections withH-matrices. SIAM J. Numer. Anal.17, 787–793Google Scholar
  40. 40.
    Wachspress, E.L. (1966): Iterative Solution of Elliptic Systems. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  41. 41.
    Young, D.M. (1971): Iterative solution of large linear systems. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Andreas Frommer
    • 1
  • Daniel B. Szyld
    • 2
  1. 1.Fachbereich MathematikBergische Universität GH WuppertalWuppertalGermany
  2. 2.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations