Numerische Mathematik

, Volume 59, Issue 1, pp 541–559 | Cite as

Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations

  • Ludwig Elsner
  • Volker Mehrmann


We discuss block matrices of the formA=[A ij ], whereA ij is ak×k symmetric matrix,A ij is positive definite andA ij is negative semidefinite. These matrices are natural block-generalizations of Z-matrices and M-matrices. Matrices of this type arise in the numerical solution of Euler equations in fluid flow computations. We discuss properties of these matrices, in particular we prove convergence of block iterative methods for linear systems with such system matrices.

Mathematics Subject Classification (1991)

65F10 65N22 15A48 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1] Berman, A., Hershkowitz, D. (1984): Characterization of acyclic D-stable matrices. Lin. Alg. Appl.58, 17–32Google Scholar
  2. [B2] Berman, A., Plemmons, R.J. (1979): Nonnegative Matrices in the Mathematical Sciences. Academic Press, New YorkGoogle Scholar
  3. [D1] Dick, E., Linden, J. (1989): A multigrid flux-difference splitting method for steady incompressible Navier-Stokes equations. Proceedings of the GAMM Conference on Numerical Methods in Fluid Mechanics, DelftGoogle Scholar
  4. [E1] Engel, G.M., Schneider, H. (1976): The Hadamard-Fischer inequality for a class of matrices defined by eigenvalue monotonicity. Lin. Multilin. Alg.4, 155–176Google Scholar
  5. [F1] Fan, K. (1960): Note on M-matrices. Quart. J. Oxford Ser.11(12) 43–49Google Scholar
  6. [F2] Fiedler, M., Pták, V. (1962): On matrices with nonpositive off diagonal elements and positive principal minors. Czechoslovak Math. J.12(87), 382–400Google Scholar
  7. [H1] Hemker, P.W., Spekreijse, S.P. (1986): Multiple Grid and Osher's Scheme for the efficient solution of the steady Euler equations. Appl. Numer. Math.2, 475–493Google Scholar
  8. [H2] Horn, R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, Cambridge, UKGoogle Scholar
  9. [M1] Mehrmann, V. (1984): On classes of matrices containing M-matrices and Hermitian positive semidefinite matrices. Lin. Alg. Appl.58, 217–234Google Scholar
  10. [O1] Ostrowski, A.M. (1937): Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helv.10, 69–96Google Scholar
  11. [V1] Varga, R.S. (1962): Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  12. [V2] Varga, R.S. (1976): On recurring theorems on Diagonal Dominance. Lin. Alg. Appl.13, 1–9Google Scholar
  13. [Y1] Young, D.M. (1971): Iterative solution of Large Linear Systems. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Ludwig Elsner
    • 1
  • Volker Mehrmann
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeldGermany

Personalised recommendations