Numerische Mathematik

, Volume 59, Issue 1, pp 55–69 | Cite as

Numerical solution of differential-algebraic equations for constrained mechanical motion

  • C. Führer
  • B. J. Leimkuhler


The two most popular formulations of the equations of constrained mechanical motion, thedescriptor andstate-space forms, each have severe practical limitations. In this paper, we discuss and relate some proposed reformulations of the equations which have improved numerical properties.

Subject Classifications

AMS(MOS): 65L05 CR: G1.7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alishenas, T., Dahlquist, G.: Personal communication. KTH Stockholm 1989Google Scholar
  2. 2.
    Arnold, V.I.: Mathematical methods of classical mechanics. Berlin Heidelberg New York: Springer 1978Google Scholar
  3. 3.
    Brenan, K.B., Campbell, S.L., Petzold, L.R.: Numerical solution of initial value problems in ordinary differential-algebraic equations. New York Amsterdam London: North Holland 1989Google Scholar
  4. 4.
    Campbell, S.L., Meyer, C.D.: Generalized inverses of linear transformations. Montreal: Pitman 1979Google Scholar
  5. 5.
    Campbell, S.L., Leimkuhler, B.: Differentiation of constraints in differential-algebraic equations. Mech. Struct. Machines (to appear)Google Scholar
  6. 6.
    Lawson, C.L., Hanson, R.J.: Solving Least squares problems. Englewood Cliffs: Prentice-Hall 1974Google Scholar
  7. 7.
    Führer, C.: Differential-algebraische Gleichungssysteme in mechanischen Mehrkörpersystemen. TU München, Thesis, Mathematisches Institut, TU München, TUM-M 8807, August 1988Google Scholar
  8. 8.
    Führer, C., Leimkuhler, B.J.: Formulation and numerical solution of the equations of constrained mechanical motion. Technical Report DFVLR-FB 89-08, Deutsche Forschungs-und Versuchsanstalt für Luft- und Raumfahrt (DFVLR), Köln 1989Google Scholar
  9. 9.
    Führer, C., Schwertassek, R.: Generation and solution of multibody system equations. Int. J. Nonl. Mechanics25, 127–141 (1990)Google Scholar
  10. 10.
    Gear, C.W.: Maintaining solution invariants in the numerical solution of ode. SIAM J. Sci. Stat. Comput.7, 734–743 (1986)Google Scholar
  11. 11.
    Gear, C.W., Gupta, G.K., Leimkuhler, B.J.: Automatic integration of the Euler-Lagrange equations with constraints. J. Comput. Appl. Math.12 & 13, 77–90 (1985)Google Scholar
  12. 12.
    Gear, C.W., Petzold, L.R.: ODE Methods for the solution of differential/algebraic systems. Technical Report UIUCDCS-R-82-1103, University of Illinois, Urbana 1982Google Scholar
  13. 13.
    Griepentrog, E., März, R.: Differential-algebraic equations and their numerical treatment. Teubner-Texte zur Mathematik No. 88, Leipzig: Teubner 1986Google Scholar
  14. 14.
    Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic equations by Runge-Kutta methods. Lecture Notes in Mathematics, 1409. Berlin Heidelberg New York: Springer 1989Google Scholar
  15. 15.
    Leimkuhler, B.J.: Some notes on perturbations of differential-algebraic equations. Technical Report, Institute of Mathematics, Helsinki University of Technology (1989)Google Scholar
  16. 16.
    Leimkuhler, B.J., Petzold, L.R., Gear, C.W.: Approximation methods for the consistent initialization of differential-algebraic equations. SIAM J. Numer Anal.28 (Feb. 1991) (to appear)Google Scholar
  17. 17.
    Lubich, C.: h2 Extrapolation methods for differential-algebraic equations of index-2. Technical Report, Universität Innnsbruck, Institut für Mathematik und Geometrie, Innnsbruck (1988)Google Scholar
  18. 18.
    Nikravesh, P.E.: Some methods for dynamical analysis of constrained mechanical systems: a survey. In: Haug, E.J. (ed.) Computer aided analysis and optimization of mechanical system dynamics, pp. 223–259. Berlin Heidelberg New York: Springer 1984Google Scholar
  19. 19.
    Ortega, J.M., Rheinboldt, W.C.: Iterative solutions of nonlinear equations in several variables. New York: Academic Press 1970Google Scholar
  20. 20.
    Ostermeyer, G.: Die Stabilisierung von Bindungen und ersten Integralen als Regelungsproblem und ihre Konsequenzen. ZAMM Z. Angew. Math. Mech.65, 185–187 (1985)Google Scholar
  21. 21.
    Ostermann, A.: A half-explicit extrapolation method for differential-algebraic systems of index 3. Technical Report, Université de Genève, Dept. de mathématiques 1989Google Scholar
  22. 22.
    Park, C.T., Haug, E.J.: Numerical methods for mixed differential-algebraic equations in kinematics and dynamics. PhD thesis, College of Engineering, University of Iowa, Iowa city 1985Google Scholar
  23. 23.
    Petzold, L.R.: A description of DASSL: a differential/algebraic system solver. In: Stepleman, R.S. (ed.) IMACS Trans. Sci. Comput. Vol. 1, p. 65. Amsterdam: North Holland 1983Google Scholar
  24. 24.
    Reich, S.: Beitrag zur Theorie der Algebrodifferentialgleichungen. Thesis, Fakultät für Elektrotechnik/Elektronik, Technische Universität Dresden (1989)Google Scholar
  25. 25.
    Rheinboldt, W.C.: Differential—algebraic systems as differential equations on manifolds. Math. Comput.43, 473–482 (1984)Google Scholar
  26. 26.
    Roberson, R.E., Schwertassek, R.: Dynamics of multibody systems. Berlin Heidelberg New York: Springer 1988Google Scholar
  27. 27.
    Rulka, W.: SIMPACK, A computer program for simulatio of large-motion multibody systems. In: Schiehlen, W. (ed.) Multibody handbook, pp. 265–284. Berlin Heidelberg New York: Springer 1990Google Scholar
  28. 28.
    Schiehlen, W.: Multibody handbook. Berlin Heidelberg New York: Springer 1990Google Scholar
  29. 29.
    Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Technical Report 84-1241, Sandia National Laboratories, Livermore 1984Google Scholar
  30. 30.
    Starner, J.W.: A numerical algorithm for the solution of implicit algebraic-differential systems of equations. PhD thesis, University of New Mexico (1976)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. Führer
    • 1
  • B. J. Leimkuhler
    • 2
  1. 1.DLR-Laboratory for Flight System DynamicsGerman Aerospace Research EstablishmentWesslingGermany
  2. 2.Department of MathematicsUniversity of KansasLawrenceUSA

Personalised recommendations