Numerische Mathematik

, Volume 60, Issue 1, pp 133–144

Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines

  • Larry L. Schumaker
  • Cornelis Traas
Article

Summary

A method is presented for fitting a function defined on a general smooth spherelike surfaceS, given measurements on the function at a set of scattered points lying onS. The approximating surface is constructed by mapping the surface onto a rectangle, and using a tensor-product of polynomial splines with periodic trigonometric splines. The use of trigonometric splines allows a convenient solution of the problem of assuring that the resulting surface is continuous and has continuous tangent planes at all points onS. Two alternative algorithms for computing the coefficients of the tensor fit are presented; one based on global least-squares, and the other on the use of local quasi-interpolators. The approximation order of the method is established, and the numerical performance of the two algorithms is compared.

Mathematics Subject Classification (1991)

65D07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnhill, R.E., Ou, H.S. (1990): Surfaces defined on surfaces. Comput. Aided Geom. Design7, 323–336Google Scholar
  2. 2.
    Dierckx, P. (1984): Algorithms for smoothing data on the sphere with tensor product splines. Computing32, 319–342Google Scholar
  3. 3.
    Foley, T.A. (1989): Interpolation to scattered data on a spherical domain. In: M.G. Cox, J.C. Mason (eds.), Algorithms for Approximation II. Clarendon Press, pp. 303–310Google Scholar
  4. 4.
    Foley, T.A., Lane, D.A., Nielson, G.M., Franke, R., Hagen, H. (1990): Interpolation of scattered data on closed surfaces. Comput. Aided Geom. Design7, 303–312Google Scholar
  5. 5.
    Franke, R. (1982): Scattered data interpolation: tests of some methods. Math. Comput.38, 181–200Google Scholar
  6. 6.
    Franke, R., Schumaker, L.L. (1987): A bibliography of multivariate approximation. In: C.K. Chui, L.L. Schumaker, F. Utreras, eds., Topics in Multivariate Approximation. Academic Press, New York, pp. 275–335Google Scholar
  7. 7.
    Gmelig Meyling, R.H.J., Houweling, R.W., Pfluger, P.R. (1984): A software package for a smooth B-spline approximation of a closed surface, user manual. Univ. AmsterdamGoogle Scholar
  8. 8.
    Gmelig Meyling, R.H.J., Pfluger, P.R. (1987): B-spline approximation of a closed surface. IMA J. Numer. Anal.7, 73–96Google Scholar
  9. 9.
    Hayes, J.G., Halliday, J. (1974): The least squares fitting of cubic spline surfaces to general data sets. J. Inst. Math. Applics.14, 89–103Google Scholar
  10. 10.
    Koch, P.E. (1986): Jackson-type theorems for trigonometric polynomials and splines. In: J. Szabados, K. Tandori, eds., Alfred Haar Memorial Conference. North Holland, Amsterdam, pp. 485–493Google Scholar
  11. 11.
    Lawson, C.L. (1984):C 1 surface interpolation for scattered data on a sphere. Rocky Mountain J. Math.14, 177–202Google Scholar
  12. 12.
    Lyche, T. (1980): A formula for the degree of approximation by trigonometric polynomials. In: E.W. Cheney, ed. Approximation Theory III. Academic Press, New York, pp. 611–614Google Scholar
  13. 13.
    Lyche, T. (1985): A recurrence relation for Chebyshevian B-splines. Constr. Approx.1, 155–173Google Scholar
  14. 14.
    Lyche, T., Winter, R. (1979): A stable recurrence relation for trigonometric B-splines. J. Approx. Theory25, 266–279Google Scholar
  15. 15.
    Nielson, G.M., Ramaraj, R. (1987): Interpolation over a sphere based upon a minimum norm network. Comput. Aided Geom. Design4, 41–57Google Scholar
  16. 16.
    Pottmann, H., Eck, M. (1990): Modified multiquadric methods for scattered data interpolation over a sphere. Comput. Aided Geom. Design7, 313–321Google Scholar
  17. 17.
    Renka, R.J. (1984): Interpolation of data on the surface of a sphere. ACM Trans. Math. Software10, 417–436Google Scholar
  18. 18.
    Schumaker, L.L. (1976): Two-stage methods for fitting surfaces to scattered data. In: R. Schaback, K. Scherer, eds. Quantitative Approximation. Lecture Notes 501, Springer, Berlin Heidelberg New York, pp. 378–389Google Scholar
  19. 19.
    Schumaker, L.L. (1981): Spline functions: Basic theory. Wiley, New YorkGoogle Scholar
  20. 20.
    Schumaker, L.L. (1982): The use of spline functions for the polar representation of 3-dimensional objects. In: K.S. Fu, T.L. Kunii, eds., Picture Processing. Springer, Berlin Heidelberg New York, pp. 96–106Google Scholar
  21. 21.
    Sunguruff, A., Greenberg, D. (1978): Computer generated images for medical applications. ACM Trans. Computer Graphics12, 196–202Google Scholar
  22. 22.
    Traas, C.R. (1987): Smooth approximation of functions on the sphere with splines. Computing38, 177–184Google Scholar
  23. 23.
    Wahba, G. (1981): Spline interpolation and smoothing on the sphere. SIAM J. Sci. Statist. Comput.2, 5–16Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Larry L. Schumaker
    • 1
  • Cornelis Traas
    • 2
  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA
  2. 2.Department of MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations