Numerische Mathematik

, Volume 66, Issue 1, pp 1–31 | Cite as

A geometric model for active contours in image processing

  • Vicent Caselles
  • Francine Catté
  • Tomeu Coll
  • Françoise Dibos
Article

Summary

We propose a new model for active contours based on a geometric partial differential equation. Our model is intrinsec, stable (satisfies the maximum principle) and permits a rigorous mathematical analysis. It enables us to extract smooth shapes (we cannot retrieve angles) and it can be adapted to find several contours simultaneously. Moreover, as a consequence of the stability, we can design robust algorithms which can be engineed with no parameters in applications. Numerical experiments are presented.

Mathematics Subject Classification (1991)

49F22 53A10 82A60 76T05 49A50 80A15 40F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, L., Lions, P.L., Morel, J.M. (1991): Image selective smoothing and edge detection by nonlinear diffusion (II). Cahier du CEREMADE no 9046, Univ. Paris IX-Dauphine, ParisGoogle Scholar
  2. 2.
    Amini, A.A., Tehrani, S., Weymouth, T.E. (1988): Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. Proc. Second ICCV. 95–99Google Scholar
  3. 3.
    Ayache, N., Boissonat, J.D., Brunet, E., Cohen, L., Chièze, J.P., Geiger, B., Monga, O., Rocchisani, J.M., Sander, P. (1989): Building highly structured volume representations in 3d medical images. Computer Aided Radiology. BerlinGoogle Scholar
  4. 4.
    Barles, G. (1985): Remarks on a flame propagation model. Rapport INRIA,464, 1–38Google Scholar
  5. 5.
    Berger, M.O. (1990): Snake growing. O. Faugeras, ed., Computer Vision-ECCV90. Lect. Notes Comput. Sci.427, 570–572Google Scholar
  6. 6.
    Berger, M.O., Mohr, R. (1990): Towards Autonomy in Active Contour Models. Proc. 10th Int. Conf. Patt. Recogn. Atlantic City, NY, vol1, 847–851Google Scholar
  7. 7.
    Blake, A., Zisserman, A. (1987): Visual Reconstruction. MIT Press, Cambridge, MAGoogle Scholar
  8. 8.
    Chen, Y.-G., Giga, Y., Goto, S. (1989): Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations. Preprint Series in Math. Ser. 57. July, Hokkaido University, Sapporo, JapanGoogle Scholar
  9. 9.
    Cinquin, P. (1986): Un modèle pour la représentation d'images médicales 3d: Proceedings Euromédicine. (Sauramps Médical)86, 57–61Google Scholar
  10. 10.
    Cinquin, P. (1987): Application des Fonctions Spline au Traitement d'Images Numériques. Université Joseph Fourier, GrenobleGoogle Scholar
  11. 11.
    Cinquin, P., Goret, C., Marque, I., Lavallee, S. (1987): Morphoscopie et modélisation continue d'images 3d. Conférence AFCET IA & Reconnaissance des Formes. AFCET pp. 907–922, ParisGoogle Scholar
  12. 12.
    Cohen, L.D. (1991): On active Contour Models and Balloons. CVGIP: Image Understanding53, 211–218Google Scholar
  13. 13.
    Cohen, L.D., Cohen, I. (1990): A finite element method applied to new active contour models and 3D reconstruction from cross sections. Proc. Third ICCV, 587–591Google Scholar
  14. 14.
    Cohen, L.D. (1989): On active Contour Models. Technical Report 1035, INRIA, Rocquencourt, Le Chesnay, FranceGoogle Scholar
  15. 15.
    Crandall, M.G., Lions, P.L. (1983): Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277, 1–42Google Scholar
  16. 16.
    Crandall, M.G., Evans, L.C., Lions, P.L. (1984): Some properties of Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.282, 487–502Google Scholar
  17. 17.
    Crandall, M.G., Ishii, I., Lions, P.L. (1991): User's guide to Viscosity Solutions of Second Order Partial Differential Equations. Cahier du CEREMADE no 9039. Univ. Paris IX-Dauphine, ParisGoogle Scholar
  18. 18.
    Evans, L.C., Spruck, J. (1991): Motion of level sets by mean curvature I. J. Diff. Geometry,33, 635–681Google Scholar
  19. 19.
    Friedman, A. (1982): Variational Principles and Free Boundary Problems. Wiley, New YorkGoogle Scholar
  20. 20.
    Gage, M. (1983): An isoperimetric inequality with applications to curve shortening. Duke Math. J.50, 1225–1229Google Scholar
  21. 21.
    Gage, M. (1984): Cuve shortening makes convex curves circular. Invent. Math.76, 357–364Google Scholar
  22. 22.
    Gage, M., Hamilton, R.S. (1986): The heat equation shrinking convex plane curves. J. Diff. Geom.23, 69–96Google Scholar
  23. 23.
    Giga, Y., Goto, S., Ishii, I., Sato, M.-H. (1990): Comparison Principle and Convexity Preserving Properties of Singular Degenerate Parabolic Equations on Unbounded Domains. Preprint Hokkaido University, 1–32, Sapporo, JapanGoogle Scholar
  24. 24.
    Grayson, M.A. (1987): The heat equation shrinks embedded plane curves to round points. J. Diff. Geom.26, 285–314Google Scholar
  25. 25.
    Hirsch, M. (1976): Differential Topology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. 26.
    Kass, M., Witkin, A., Terzopoulos, D. (1988): Snakes: active contour models. Int. J. Comput. Vision.1, 321–331Google Scholar
  27. 27.
    Kass, M., Witkin, A., Terzopoulos, D. (1987): Snakes: active contour models. Proc. First ICCV, 259–267Google Scholar
  28. 28.
    Ladyzhenskaja, O.A., Solonnikov, V.A., Ural'tseva, N.N. (1968): Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, R.I.Google Scholar
  29. 29.
    Leroy, B. (1991): Etude de quelques propriétés des modèles de contours actifs (“snakes”). Rapport de stage de D.E.A. Univ. Paris-IX Dauphine, SeptembreGoogle Scholar
  30. 30.
    Lions, P.L. (1982). Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics69, Pitman, BostonGoogle Scholar
  31. 31.
    Marr, D. (1982): Vision. Freeman, San FranciscoGoogle Scholar
  32. 32.
    Marr, D., Hildreth, E. (1980): A theory of edge detection. Proc. R. Soc. Lond. B207, 187–217Google Scholar
  33. 33.
    Osher, S., Sethian, J.A. (1988): Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Comput. J. Physics.79, 12–49Google Scholar
  34. 34.
    Poggio, T., Torre, V., Koch, C. (1985): Computational vision and regularization theory. Nature,317 (6035), 314–319Google Scholar
  35. 35.
    Terzopoulos, D. (1986): Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. Mach. Intell.8: 413–424Google Scholar
  36. 36.
    Terzopoulos, D. (1988): The computation of visible surface representations. IEEE Trans. Pattern Anal. Mach. Intell.10(4), 417–438Google Scholar
  37. 37.
    Terzopoulos, D., Witkin, A., Kass, M. (1987): Symmetry seeking models for 3d object reconstruction. Proc. First ICCV, 269–276Google Scholar
  38. 38.
    Terzopoulos, D., Witkin, A., Kass, M. (1988): Constraints on deformable models: recovering 3d shape and nonrigid motion. Artif. Intell.36, 91–123Google Scholar
  39. 39.
    Zucker, S., David, C., Dobbins, A., Iverson, L. (1988): The Organization of Curve Detection: Coarse Tangent Fields and Fine Spline Coverings. In Second International Conference on Computer Vision. pp. 568–577, Tampa Florida (USA)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Vicent Caselles
    • 1
  • Francine Catté
    • 2
  • Tomeu Coll
    • 1
  • Françoise Dibos
    • 2
  1. 1.Department de Matemàtiques i InformàticaUniversitat de les Illes BalearsPalma de Mallorca (Balears)Spain
  2. 2.CEREMADEUniversité de Paris-DauphineParis Cedex 16France

Personalised recommendations