A parallel algorithm for the eigenvalues and eigenvectors of a general complex matrix
- 258 Downloads
- 8 Citations
Summary
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this problem typically display only linear convergence, Sequential ‘norm-reducing’ algorithms also exist and they display quadratic convergence in most cases. The new algorithm is a parallel form of the ‘norm-reducing’ algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures. In particular, the algorithm can be implemented usingn2/4 processors, takingO(n log2n) time for random matrices.
Subject classification
AMS (MOS) CR O65Preview
Unable to display preview. Download preview PDF.
References
- 1.Bischof, C.: Computing the singular value decomposition on a distributed system of vector processors. Technical report 87 869, Department of Computer Science, Cornell University 1987Google Scholar
- 2.Brent, R.P., Luk, F.T.: The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays. SIAM J. Sci. Stat. Comput.6, 69–84 (1985)Google Scholar
- 3.Causey, R.L.: Computing eigenvalues of non hermitian matrices by methods of Jacobi type. J. SIAM6, 172–181 (1958)Google Scholar
- 4.Eberlein, P.J.: A Jacobi method for the automatic computation of eigenvalues and eigenvectors of an arbitrary matrix. J. SIAM10, 74–88 (1962)Google Scholar
- 5.Eberlein, P.J.: On the Schur decomposition of a matrix for parallel computation. IEEE Trans. Comput.36, 167–174 (1987)Google Scholar
- 6.Eberlein, P.J., Moothroyd, J.: Solution to the eigenproblem by a normreducing Jacobi-type method. Numer. Math.4, 24–40 (1968)Google Scholar
- 7.Fan, K., Hoffman, A.J.: Lower bounds for the rank and location of eigenvalues of a matrix. National Bureau of Standards Applied Math. Series39, 117–130 (1954)Google Scholar
- 8.Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Am. Math. Soc.94, 1–23 (1960)Google Scholar
- 9.Goldstine, H.H., Horwitz, L.P.: A procedure for the diagonalization of normal matrices. J ACM6, 176–195 (1959)Google Scholar
- 10.Goldstine, H.H., Murray, F.J., Neumann, J. von: The Jacobi method for real symmetric matrices. J ACM6, 59–96 (1959)Google Scholar
- 11.Golub, G., Van Loan, C.: Matrix computations. Johns Hopkins University Press (1983)Google Scholar
- 12.Hansen, E.R.: On Jacobi methods and block Jacobi methods for computing matrix eigenvalues. PhD thesis, Stanford University 1960Google Scholar
- 13.Jacobi, C.G.J.: Über ein Verfahren die in Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. J. Reine Angew. Math.30, 51–95 (1846)Google Scholar
- 14.Luk, F.T., Park, H.T.: On parallel Jacobi orderings. Technical report EE-CEG-86-5, School of Electrical Engineering, Cornell University 1986Google Scholar
- 15.Luk, F.T., Park, H.T.: A proof of convergence for two parallel Jacobi SVD algorithms. Technical Report EE-CEG-86-12, School of Electrical Engineering, Cornell University 1986Google Scholar
- 16.Osborne, E.E.: On pre-conditioning of matrices. J. ACM7, 338–345 (1960)Google Scholar
- 17.Pardekooper, M.H.C.: An eigenvalue algorithm based on norm-reducing transformations. PhD thesis, Technische Universiteit Eindhoven 1969Google Scholar
- 18.Pardekooper, M.H.C.: A quadratically convergent parallel Jacobi process for diagonally dominant matrices with distinct eigenvalues. J. Comput. Appl. Math.27, 3–16 (1989)Google Scholar
- 19.Ruhe, A.: On the quadratic convergence of a generalization of the Jacobi method to arbitrary matrices. BIT8, 210–231 (1968)Google Scholar
- 20.Rutishauser, H.: Une methode pour le calcul des values propres des matrices nonsymetriques. Comptes Rendus259, 2758 (1964)Google Scholar
- 21.Sameh, A.H.: On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comput.25, 579–590 (1971)Google Scholar
- 22.Schreiber, R.: Solving eigenvalue and singular value problems on an undersized systolic array. SIAM J. Sci. Stat. Comput.7, 441–451 (1986)Google Scholar
- 23.Shroff, G.: Parallel Jacobi algorithms for the algebraic eigenvalue problem. PhD thesis, Rensselaer Polytechnic Institute 1990Google Scholar
- 24.Shroff, G., Schreiber, R.: On the convergence of the cyclic Jacobi method for parallel block orderings. SIAM J. Matrix Anal. Appl.10 (1989)Google Scholar
- 25.Stewart, G.W.: A Jacobi-like algorithm for computing the schur decomposition of a nonhermitian matrix. SIAM J. Sci. Stat. Comput.6, 853–864 (1985)Google Scholar
- 26.Veselic, K.: On a class of Jacobi-like procedures for diagonalizing arbitrary real matrices. Numer. Math.33, 157–172 (1979)Google Scholar
- 27.Veselic, K.: A quadratically convergence Jacobi-like method for real matrices with complex conjugate eigenvalues. Numer. Math.33, 425–435 (1979)Google Scholar
- 28.Wilkinson, J.H.: Almost diagonal matrices with multiple or close eigenvalues. Linear Algebra Appl.1, 1–12 (1968)Google Scholar