Numerische Mathematik

, Volume 58, Issue 1, pp 537–567

Spline qualocation methods for boundary integral equations

  • G. A. Chandler
  • I. H. Sloan
Article

Summary

This paper further develops the qualocation method for the solution of integral equations on smooth closed curves. Qualocation is a (Petrov-)Galerkin method in which the outer integrals are performed numerically by special quadrature rules. Here we allow the use of splines as trial and test functions, and prove stability and convergence results for certain qualocation rules when the underlying (Petrov-)Galerkin method is stable. In the common case of a first kind equation with the logarithmic kernel, a typical qualocation method employs piecewise-linear splines, and performs the outer integrals using just two points per interval. This method, with appropriate choice of the quadrature points and weights, has orderO(h5) convergence in a suitable negative norm. Numerical experiments suggest that these rates of convergence are maintained for integral equations on open intervals when graded meshes are used to cope with unbounded solutions.

Subject classifications

AMS(MOS) 65R20 CR. G.1.9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N.: A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput.41, 383–397 (1983)Google Scholar
  2. 2.
    Arnold, D.N., Wendland, W.L.: The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math.47, 317–341 (1985)Google Scholar
  3. 3.
    de Boor, C.: A practical guide to splines, 1st Ed. Berlin Heidelberg New York: Springer 1978Google Scholar
  4. 4.
    Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary element techniques, 1st Ed. Berlin Heidelberg New York: Springer 1984Google Scholar
  5. 5.
    Brown, G., Chandler, G.A., Sloan, I.H., Wilson, D.C.: Properties of certain trigonometric series arising in numerical analysis J. Math. Anal. Appl. (to appear)Google Scholar
  6. 6.
    Brown, G., Wilson, D.: Trigonometric sums and polynomial zeros. In: Caoling, M., Meaney, C., Moran, W. (eds.) Miniconferences on Harmonic analysis and operator algebras. Proceedings of the Centre for Mathematical Analysis, Vol. 16, pp 15–20. Australian National University: Canberra 1988Google Scholar
  7. 7.
    Chandler, G.A., Graham, I.G.: Product integration collocation methods for non-compact integral operator equations. Math. Comput.50, 125–138 (1988)Google Scholar
  8. 8.
    Costabel, M., Ervin, V.J., Stephan, E.P.: On the convergence of collocation methods for Symm's integral equation on open curves. Math. Comput.51, 167–179 (1988)Google Scholar
  9. 9.
    Costabel, M., Stephan, E.P.: On the convergence of collocation methods for boundary integral equations on polygons. Math. Comput.49, 461–478 (1987)Google Scholar
  10. 10.
    Hartmann, F.: Elastostatics. In: Brebbia, C.A. (ed.) Progress in boundary element methods (Vol. 1), pp. 84–167. London: Pentech 1981Google Scholar
  11. 11.
    Henrici, P.: Fast Fourier methods for computational complex analysis. SIAM Review21, 481–527 (1979)Google Scholar
  12. 12.
    de Hoog, F.R.: Product integration techniques for the numerical solution of integral equations. Ph.D. Thesis, Australian National University, Canberra, 1974Google Scholar
  13. 13.
    Jaswon, M.A., Symm, G.T.: Integral equation methods in potential theory and elastostatics, 1st Ed. New York: Academic Press 1977Google Scholar
  14. 14.
    Kellogg, O.D.: Foundations of potential theory, 2nd Ed. New York: Dover 1954 (Berlin, Springer, 1929)Google Scholar
  15. 15.
    Lamp, U., Schleicher, T., Stephan, E., Wendland, W.L.: Galerkin collocation for an improved boundary element method on a plane mixed boundary value problem. Computing33, 269–296 (1984)Google Scholar
  16. 16.
    Michlin, S.G.: Mathematical physics, an advanced course, 1st Ed. Amsterdam: North Holland (1970)Google Scholar
  17. 17.
    Prössdorf, S., Schmidt, G.: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981)Google Scholar
  18. 18.
    Rank, E.: Adaptive boundary element methods. In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds.) Boundary elements IX, pp. 259–278. Berlin Heidelberg New York: Springer 1987Google Scholar
  19. 19.
    Saranen, J.: The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane. Numer. Math.53, 499–512 (1988)Google Scholar
  20. 20.
    Saranen, J., Wendland, W.L.: On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comput.45, 91–108 (1985)Google Scholar
  21. 21.
    Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput.28, 959–962 (1974)Google Scholar
  22. 22.
    Schmidt, G.: On spline collocation methods for singular integral equations. Math. Nachr.111, 177–196 (1983)Google Scholar
  23. 23.
    Schmidt, G.: On spline collocation methods for boundary integral equations in the plane. Math. Methods Appl. Sci.7, 74–89 (1985)Google Scholar
  24. 24.
    Sloan, I.H.: A quadrature-based approach to improving the collocation method. Numer. Math.54, 41–56 (1988)Google Scholar
  25. 25.
    Sloan, I.H., Wendland, W.L.: A quadrature-based approach to improving the collocation method for splines of even degree. Zeit. Anal. Anwendungen8, 361–376 (1989)Google Scholar
  26. 26.
    Wendland, W.L.: Boundary element methods and their asymptotic convergence. In: Filippi, P. (ed.) Theoretical acoustics and numerical techniques. pp. 135–216 (CISM Courses 277. Berlin Heidelberg New York: Springer 1983Google Scholar
  27. 27.
    Wendland, W.L.: On some mathematical aspects of boundary element methods for elliptic problems. In: Whiteman, J.R. (ed.) MAFELAP V, pp. 511–561, London: Academic Press 1985Google Scholar
  28. 28.
    Wendland, W.L.: Strongly elliptic boundary integral equations. In: Iserles, A., Powell, M.J.D. (eds.) The state of the art in numerical analysis, pp. 511–561. Oxford: Clarendon 1987Google Scholar
  29. 29.
    Yan, Y., Sloan, I.H.: Mesh grading for integral equations of the first kind with logarithmic kernel. SIAM J. Numer. Anal.26, 574–587 (1989)Google Scholar
  30. 30.
    Yu, D.: A-posteriori error estimates and adaptive approaches for some boundary element methods. In: Brebbia, C.A., Wendland, W.L., Kuhn, G. (eds.) Boundary elements IX, pp. 241–257. Berlin Heidelberg New York: Springer 1987Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. A. Chandler
    • 1
  • I. H. Sloan
    • 2
  1. 1.Department of MathematicsUniversity of QueenslandSt. LuciaAustralia
  2. 2.School of MathematicsUniversity of New South WalesSydneyAustralia

Personalised recommendations