Advertisement

Numerische Mathematik

, Volume 58, Issue 1, pp 185–202 | Cite as

Some upwinding techniques for finite element approximations of convection-diffusion equations

  • Randolph E. Bank
  • Josef F. Bürgler
  • Wolfgang Fichtner
  • R. Kent Smith
Article

Summary

A uniform framework for the study of upwinding schemes is developed. The standard finite element Galerkin discretization is chosen as the reference discretization, and differences between other discretization schemes and the reference are written as artificial diffusion terms. These artificial diffusion terms are spanned by a four dimensional space of element diffusion matrices. Three basis matrices are symmetric, rank one diffusion operators associated with the edges of the triangle; the fourth basis matrix is skew symmetric and is associated with a rotation by ϕ/2. While finite volume discretizations may be written as upwinded Galerkin methods, the converse does not appear to be true. Our approach is used to examine several upwinding schemes, including the streamline diffusion method, the box method, the Scharfetter-Gummel discretization, and a divergence-free scheme.

Subject classifications

AMS(MOS) 65N05 65N10 65N20 CR: G1.8 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal.24, 777–787 (1987)Google Scholar
  2. 2.
    Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulations. IEEE Trans. Electr. Dev., ED-30, 1031–1041 (1983)Google Scholar
  3. 3.
    Bürgler, J.F., Bank, R.E., Fichtner, W., Smith, R.K.: A new discretization for the semiconductor continuity equations. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems8, 479–489 (1989)Google Scholar
  4. 4.
    Caussignac, P., Touzani, R.: Linear conforming and nonconforming upwind finite elements for the convection-diffusion equation. IMA J. Numer. Anal.8, 85–103 (1988)Google Scholar
  5. 5.
    Hughes, T.J.R., Brooks, A.: Streamline-upwind Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng.32, 199–259 (1982)Google Scholar
  6. 6.
    Hughes, T.J.R., Brooks, A.: A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline upwind procedure. In: Gallagher, R.H., Norrie, D.H., Oden, J.T., Zienkiewicz, O.C. (eds.) Finite elements in fluids, Vol. 4, pp 47–66 New York: Wiley 1984Google Scholar
  7. 7.
    Ikeda, T.: Maximum principle in finite element models for convection-diffusion phenomena. North-Holland Mathematics Studies, Vol. 76, (Lecture Notes in Numerical and Applied Analysis, Vol. 4). Amsterdam: North-Holland 1983Google Scholar
  8. 8.
    Johnson, C., Navert, U., Pitkaranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng.45, 285–312 (1984)Google Scholar
  9. 9.
    Ohmori, K., Ushijima, T.: A technique of upstream type applied to a linear conforming finite element approximation of convection-diffusion equations. RAIRO Anal. Numer.18, 309–332 (1984)Google Scholar
  10. 10.
    Strang, G., Fix, G.: An Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, New Jersey 1973Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Randolph E. Bank
    • 1
  • Josef F. Bürgler
    • 2
  • Wolfgang Fichtner
    • 2
  • R. Kent Smith
    • 3
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA
  2. 2.Integrated Systems LaboratorySwiss Federal Institute of TechnologyZürichSwitzerland
  3. 3.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations