Numerische Mathematik

, Volume 61, Issue 1, pp 171–214

On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2

  • Gabriel N. Gatica
  • George C. Hsiao
Article

Summary

In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.

Mathematics Subject Classification (1991)

35J65 35J05 65N15 65N30 65N50 65R20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, H. (1989): Convergent finite element formulations for transonic flows. Number. Math.56, 5, 425–447Google Scholar
  2. Berger, H., Warnecke, G., Wendland, W.L. (1990): Finite elements for transonic potential flows. Numer. Methods Partial Differ. Equations6, 1, 17–42Google Scholar
  3. Brezis, H. (1968): Equations et Inequations Nonlinéaries dans les Espaces Vectorieles en Dualite. Ann. Inst. Fourier, Grenoble,18, 115–174Google Scholar
  4. Brezzi, F., and Johnson, C., (1979): On the coupling of boundary integral and finite element methods. Calcolo16, 189–201Google Scholar
  5. Ciarlet, P. (1978): The Finite Element Method for Elliptic Problems. North Holland, AmsterdamGoogle Scholar
  6. Colton, D., Kress, R. (1983): Integral Equation Methods in Scattering Theory. Wiley, New YorkGoogle Scholar
  7. Costabel, M. (1987): Symmetric methods for the coupling of finite elements and boundary elements. In: C.A. Brebbia et al., ed., Boudary Elements IX, vol. 1. Springer, Berlin Heidelberg New York, pp. 411–420Google Scholar
  8. Costabel, M. (1988): Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19, 613–626Google Scholar
  9. Costabel, M., Stephan, E.P. (1988;1990): Coupling of finite element and boundary element methods for an elasto-plastic interface problem. Preprint, Georgia Institute of Technology; SIAM J. Numer. Anal.27, 5, 1212–1226Google Scholar
  10. Feistauer, M. (1986): Mathematical and numerical study of nonlinear problems in fluid mechanics. In: J. Vosmansky, M. Zlámal, eds., Proc. Conf. Equadiff 6, Brno 1985. Springer, Berlin Heidelberg New York, pp. 3–16Google Scholar
  11. Feistauer, M. (1986): On the finite element approximation of a cascade flow problem. Numer Math.50 655–684Google Scholar
  12. Feistauer, M., Zenisek, A. (1987): Finite element solution of nonlinear elliptic problems. Numer. Math.50, 451–475Google Scholar
  13. Feng, K. (1983): Finite element method and natural boundary reduction. In: Proc. Inter. Congress of Mathematics, Polish Academy of Sciences, Warsaw, pp. 1439–1453Google Scholar
  14. Gatica, G.N. (1989): On the Coupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems. Ph.D. Dissertation, University of DelawareGoogle Scholar
  15. Gatica, G.N., Hsiao, G.C. (1989a): The coupling of boundary integral and finite element methods for a nonlinear exterior Dirichlet problem in the plane. Par I: The weak formulation and Galerkin approximations. Technical Report 89-2, Center for Mathematics of Waves, Department of Mathematical Sciences, University of DelawareGoogle Scholar
  16. Gatica, G.N., Hsiao, G.C. (1989b): The coupling of boundary integral and finite element methods for a nonliear exterior Dirichlet problem in the plane, Part II: Asymptoticerror estimates. Technical Report 89-3, Center for Mathematics of Waves, Department of Mathematical Sciences, University of DelawareGoogle Scholar
  17. Gatica, G.N., Hsiao, G.C. (1989c): The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Zeitschrift fur Analysis und ihre Anwendungen (ZAA)8, 4, 377–387Google Scholar
  18. Gatica, G.N., Hsiao, G.C. (1990): On a class of variational formulations for some nonlinear interface problems. Rendiconti di Matematica e delle sue Applicazione10, 4, 681–715Google Scholar
  19. Gilbarg, D., Trudinger, N. (1983): Elliptic Partial Differential Equations of Second Order, 2nd ed. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Han, H. (1987/1990): A new class of variational formulations for the coupling of finite and boundary element methods. Preprint, University of Maryland, College Park; J. Comput. Math.8 3, 223–232Google Scholar
  21. Hsiao, G.C. (1986): On the stability of integral equations of the first kind with logarithmic kernels. Archive for Rational Mechanics and Analysis94, 2, 179–192Google Scholar
  22. Hisao, G.C. (1989): The coupling of BEM and FEM-a brief review. In: C.A. Brebbia et al., eds., Boundary Elements X, vol. 1. Springer, Berlin Heidelberg New York, pp. 431–445Google Scholar
  23. Hsiao, G.C. (1989): On boundary integral equations of the first kind. J. Comput. Math.7, 2, 121–131Google Scholar
  24. Hsiao, G.C. (1990): The coupling of boundary element and finite element methods. A plenary lecture at the GAMM-Tagung 1989. Z. Angew. Math. Mech. (ZAMM)70, 6, 493–503Google Scholar
  25. Hsiao, G.C., Porter, J.F. (1986): A hybrid method for an exterior boundary value problem based on asympotic expansion boundary integral equation and finite element approximations. In: C.A. Brebbia et al., eds., Innovative Numerical Methods in Engineering, Springer, Berlin Heidelberg New York, pp. 83–88Google Scholar
  26. Hsiao, G.C., Roach, G.F. (1979): On the relationship between boundary value problems. J. Math. Anal. Appl.68, 557–566Google Scholar
  27. Hisao, G.C., Schnack, E., Wendland, W.L. (1991): Stability and convergence of hybrid stress methods. In preparationGoogle Scholar
  28. Hsiao, G.C., Wendland, W.L. (1977): A finite element method for some integral equations of the first kind. J. Math. Anal. Appl.58, 449–481Google Scholar
  29. Hsiao, G.C., Wendland, W.L. (1981): The Aubin-Nitsche lemma for integral equations. J. Integral Equations3, 299–315Google Scholar
  30. Johnson, C., Nedelec, J.C. (1980): On the coupling of boundary integral and finite element methods. Math. Comput.35, 1063–1079Google Scholar
  31. Kohn, J.J., Nirenberg, L. (1965): An algebra of pseudodiferential operators. Comm. Pure Appl. Math.18, 269–305Google Scholar
  32. Kufner, A., John, O., Fucik, S. (1977): Function Spaces. Academia, PragueGoogle Scholar
  33. Leroux, M.N. (1977): Methode d'elements finis pour le resolution numérique de problémes extérieurs en dimension 2. RAIRO Anal. Number.11, 27–60Google Scholar
  34. MacCamy, R.C., Marin, S.P. (1980): A finite element method for exteior interface problems. Int. J. Math. Math. Sci.3, 311–350Google Scholar
  35. Michlin, S.G. (1962): Variationsmethoden der Mathematischen Physik. Akademie-Verlag, BerlinGoogle Scholar
  36. Michlin, S.G. (1970): Mathematical Physics: an Advanced Course. North Holland AmsterdamGoogle Scholar
  37. Michlin, S.G. (1978): Partielle Differentialgleichungen in der Mathematischen Physik. Akademie-Verlag, BerlinGoogle Scholar
  38. Nečas, J. (1967): Les Méthodes Directes en Théorie des Equations Elliptiques. Academia, Prague; Masson, ParisGoogle Scholar
  39. Nečas, J. (1986): Introduction to the Theory of Nonlinear Elliptic Equations. Wiley, New YorkGoogle Scholar
  40. Oden, J.T. (1986): Qualitative Methods in Nonlinear Mechanis. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  41. Porter, J.F. (1986): On the Coupling of Boundary Integral and Finite Element Methods for a Class of Singular Perturbation Problems. Ph.D. Dissertation, University of DelawareGoogle Scholar
  42. Schnack, E. (1987): A hybrid BEM model. Internationla Journal for Numerical Methods in Engineering24, 5, 1015–1025Google Scholar
  43. Vainberg, M.M. (1964): Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, London AmsterdamGoogle Scholar
  44. Wendland, W.L. (1986): Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, London AmsterdamGoogle Scholar
  45. Wendland, W.L. (1986): On asymptotic error estimates for the combined BEM and FEM. In: R.P. Shaw et al., eds., Innovative Numerical Methods in Engineering, Springer, Berlin Heidelberg New York, pp. 55–70Google Scholar
  46. Wendland, W.L. (1988): On asymptotic error estimates for the combined BEM and FEM. In: E. Stein, W.L. Wendland eds., CISM Lecture Notes 301, Finite Element and Boundary Element Techniques from Mathematical and Engineering point of view. Udine, Springer, Wien New York pp. 273–333Google Scholar
  47. Zlamal, M. (1973): Curved elements in the finite element method. SIAM J. Numer. Anal.10, 229–240Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gabriel N. Gatica
    • 1
  • George C. Hsiao
    • 2
  1. 1.Departmento de matemáticaUniversidad de ConcepciónConcepciónChile
  2. 2.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations