A molecular beam study of the evaporation of water from a liquid jet

  • M. Faubel
  • S. Schlemmer
  • J. P. Toennies


A method to maintain a clean surface of a liquid in a high vacuum is described. Using a very thin and fast liquid jet it is not only possible to prevent freezing of the liquid but also to reduce the number of collisions between evaporating molecules to negligibly small values. Thus many of the standard, vacuum dependent, particle probing techniques for solid surfaces can be used for studies of rapidly vaporizing, high vapor pressure liquids. In a first molecular beam investigation we have used time-of-flight analysis to measure the velocity distribution of H2O molecules vaporizing from thin jets of pure liquid water. The experiments were carried out for liquid jet diameters between 50 and 5 µm. In this range the expanding vapor is observed to undergo the transition to the collision-free molecular flow regime. From the measured velocity distributions the local surface temperature is determined to be less than 210 K. This appears to be the lowest temperature ever reported for supercooled liquid water.


35.80 47.45 64.00 68.10 64.70.F 61.25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stern, O.: Z. Phys.2, 49 (1920)Google Scholar
  2. 2.
    Stern, O.: Z. Phys.3, 417 (1920)Google Scholar
  3. 3.
    Born, M.: Phys. Z.21, 578 (1920)Google Scholar
  4. 4.
    Tang, S.P., Fenn, J.B.: Phys. Chem. 77, 940 (1973)Google Scholar
  5. 5.
    Hickmann, K.: Ind. Eng. Chem.46, 1442 (1954)Google Scholar
  6. 6.
    See for example Lednovich, S.L., Fenn, J.B.: AIChe J.23, 454 (1977)Google Scholar
  7. 7.
    Siegbahn, H., Lundholm, M., Holmberg, S., Arbman, M.: J. Electron. Spectrosc. Relat. Phenom.40, 163 (1986)Google Scholar
  8. 8.
    Keller, W., Morgner, H., Müller, W.A.: Mol. Phys.57, 623 (1986); ibid.58, 1039 (1986)Google Scholar
  9. 9.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular theory of gases and liquids. New York: Wiley 1954Google Scholar
  10. 10.
    Electron microscope apertures. Ordering No. C70389-B 271-C1 Siemens AG, Hannover, FRGGoogle Scholar
  11. 11.
    Schlemmer, S.: Göttingen 1986, Max-Planck-Institut für Strömungsforschung, Bericht 108/1987Google Scholar
  12. 12 a.
    Legge, H., Fuchs, H.: Acta Astron.6, 1213 (1979)Google Scholar
  13. 12 b.
    Orme, M., Muntz, E.P.: Rev. Sci. Instrum.58, 279 (1987)Google Scholar
  14. 13.
    Lord Rayleigh: Proc. R. Soc. London A29, 71 (1879)Google Scholar
  15. 14.
    Anderson, J.B., Andres, R.P., Fenn, J.B.: Adv. Chem. Phys.10, 275 (1966)Google Scholar
  16. 15.
    Fenn, J.B., Ryali, S.B., Sinha, M.P.: Final Report on Contract #954327 between Caltech and Relay Development CorporationGoogle Scholar
  17. 16.
    Bier, K., Hagena, O.F.: Z. Angew. Phys.14, 658 (1962)Google Scholar
  18. 17.
    This corresponds to an effective target density of 2.2·1015 H2O molecules per cm2 Google Scholar
  19. 18.
    Handbook of chemistry and physics. 63rd Edn., CRC Press Inc., Florida (1983), D-64, D-158Google Scholar
  20. 19.
    Kraus, G.F., Greer, S.C.: J. Phys. Chem.88, 4781 (1984)Google Scholar
  21. 19a.
    Chen, S.H., Teixeira, J.: Adv. Chem. Phys.64, 1 (1986)Google Scholar
  22. 20.
    Muntz, E.D., Dixon, M.: AIAA: 23rd Aerospace Science Meeting 1985Google Scholar
  23. 21.
    Bossel, U., David, R., Faubel, M., Winkelmann, K.: In: Rarefield gas dynamics. Karamcheti, K. (ed.), p. 235. New York: Academic Press 1974Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Faubel
    • 1
  • S. Schlemmer
    • 1
  • J. P. Toennies
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenFederal Republic of Germany

Personalised recommendations