Numerische Mathematik

, Volume 45, Issue 1, pp 105–116

Superconvergence phenomenon in the finite element method arising from averaging gradients

  • Michal Křížek
  • Pekka Neittaanmäki
A Short Note on Romberg Integration

Summary

We study a superconvergence phenomenon which can be obtained when solving a 2nd order elliptic problem by the usual linear elements. The averaged gradient is a piecewise linear continuous vector field, the value of which at any nodal point is an average of gradients of linear elements on triangles incident with this nodal point. The convergence rate of the averaged gradient to an exact gradient in theL2-norm can locally be higher even by one than that of the original piecewise constant discrete gradient.

Subject Classifications

AMS(MOS) 65 N 30 CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal.10, 582–606 (1973)Google Scholar
  2. 2.
    Bramble, J.H., Hilbert, S.R.: Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 112–124 (1970)Google Scholar
  3. 3.
    Bramble, J.H., Schatz, A.H.: Estimates for spline projection. RAIRO Anal. Numér.10, 5–37 (1976)Google Scholar
  4. 4.
    Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comput.31, 94–111 (1977)Google Scholar
  5. 5.
    Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam-New York-Oxford: North-Holland 1978Google Scholar
  6. 6.
    Giarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math.9, 394–430 (1967)Google Scholar
  7. 7.
    Dautov, R.Z.: Superconvergence of finite-element method schemes with numerical integration for quasilinear fourth-order elliptic equations. Differential Equations18, 818–824 (1982)Google Scholar
  8. 8.
    Dautov, R.Z., Lapin, A.V.: Difference schemes of an arbitrary order of accuracy for quasilinear elliptic equations (Russian). Izv. Vysš. Učebn. Zaved. Matematika209, 24–37 (1979)Google Scholar
  9. 9.
    Dautov, R.Z., Lapin, A.V.: Investigation of the convergence, in mesh norms, of finite-element-method schemes with numerical integration for fourth-order elliptic equations. Differential Equations17, 807–817 (1981)Google Scholar
  10. 10.
    Descloux, J.: Interior regularity and local convergence of Galerkin finite element approximations for elliptic equations. Topics in Numerical Analysis II. New York: Academic Press, pp. 27–41, 1975Google Scholar
  11. 11.
    Douglas, J.J.: A superconvergence result for the approximate solution of the heat equation by a collocation method. Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. (Proc. Sympos. Univ. of Maryland, 1972, Aziz, A.K. (ed.)). New York-London: Academic Press, pp. 475–490, 1972Google Scholar
  12. 12.
    Douglas, J.J., Dupont, T.: Superconvergence for Galerkin methods for the two point boundary problem via local projections. Numer. Math.21, 270–278 (1973)Google Scholar
  13. 13.
    Douglas, J.J., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. In: Topics in Numerical Analysis. Miller, J.J.H. (ed.), pp. 89–92. London: Academic Press 1973Google Scholar
  14. 14.
    Douglas, J.J., Dupont, T.: Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces. Numer. Math.22, 99–109 (1974)Google Scholar
  15. 15.
    Douglas, J.J., Dupont, T., Wheeler, M.F.: Some super-convergence results for anH 1-Galerkin procedure for the heat equation. Computing Methods in Engineering, Part 1 (Proc. Sympos., Versailles, 1973). Berlin-Heidelberg-New York: Springer 1974, pp. 288–311Google Scholar
  16. 16.
    Douglas, J.J., Dupont, T., Wheeler, M.F.: AnL estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numér.8, 61–66 (1974)Google Scholar
  17. 17.
    Houstis, E.N.: Application of method of collocation on lines for solving nonlinear hyperbolic problems. Math. Comput.31, 443–456 (1977)Google Scholar
  18. 18.
    Johson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Math. Comput.33, 375–400 (1982)Google Scholar
  19. 19.
    Lapin, A.V.: Schemes of the finite element methods for some classes of variational inequalities, error estimates, algorithms (Russian). (Proc. of the fifth conference on variational-difference methods in mathematical physics, Moscow. 1983) (To appear in 1984)Google Scholar
  20. 20.
    Lesaint, P., Zlámal, M.: Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér.13, 139–166 (1979)Google Scholar
  21. 21.
    Lindberg, B.: Error estimation and iterative improvement for discretization algorithms. BIT20, 486–500 (1980)Google Scholar
  22. 22.
    Long, M.J., Morton, K.W.: The use of divided differences in finite element calculations. J. Inst. Math. Appl.19, 307–323 (1977)Google Scholar
  23. 23.
    Nečas, J.: Les méthodes directes en théorie des equations elliptiques. Masson, Paris, 1967Google Scholar
  24. 24.
    Neittaanmäki, P., Saranen, J.: A modified least squares FE-method for ideal fluid flow problems. J. Comput. Appl. Math.8, 165–169 (1982)Google Scholar
  25. 25.
    Nitsche, J.A., Schatz, A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comput.28, 937–958 (1974)Google Scholar
  26. 26.
    Oganesjan, L.A., Ruhovec, L.A.: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary (Russian). Ž. Vyčisl. Mat. i Mat. Fiz.9, 1102–1120 (1969)Google Scholar
  27. 27.
    Oganesjan, L.A., Ruhovec, L.A.: Variational-difference methods for the solution of elliptic equations (Russian). Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979Google Scholar
  28. 28.
    Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput.31, 414–442 (1977)Google Scholar
  29. 29.
    Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs-New Jersey: Prentice Hall 1973Google Scholar
  30. 30.
    Thomée, V.: Spline approximation and difference schemes for the heat equation. Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. of Maryland, 1972, A.K. Aziz (ed.). New York-London: Academic Press, 1972, pp. 711–746Google Scholar
  31. 31.
    Thomée, V.: Some error estimates in Galerkin methods for parabolic equations. Mathematical Aspects of Finite Element Methods (Proc. of the the conference, Rome, 1975). Berlin-Heidelberg-New York: Springer 1977, pp. 353–362Google Scholar
  32. 32.
    Thomée, V.: High order local approximations to derivatives in the finite element method. Math. Comput.31, 652–660 (1977)Google Scholar
  33. 33.
    Thomée, V., Wendroff, B.: Convergence estimates for Galerkin method for variable coefficient initial value problems. SIAM J. Numer. Anal.11, 1059–1068 (1974)Google Scholar
  34. 34.
    Vacek, J.: Dual variational principles for an elliptic partial differential equation. Apl. Mat.21, 5–27 (1976)Google Scholar
  35. 35.
    Volkov, E.A.: A rapidly converging quadratures for solving Laplace's equation on polygons. Soviet Math.19, 154–157 (1978)Google Scholar
  36. 36.
    Wendland, W.L., Stephan, E., Hsiao, G.C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Meth. Appl. Sci.1, 265–321 (1979)Google Scholar
  37. 37.
    Zienkiewicz, O.C., Cheung, Y.K.: The finite element method in structural and continuum mechanics. London: McGraw Hill 1967Google Scholar
  38. 38.
    Zlámal, M.: Some superconvergence results in the finite element method. Mathematical Aspects of Finite Element Methods (Proc. of the conference, Rome, 1975). Berlin-Heidelberg-New York: Springer 1977, pp. 353–362Google Scholar
  39. 39.
    Zlámal, M.: Superconvergence and reduced integration in the finite element method. Math. Comput.32, 663–685 (1978)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Michal Křížek
    • 1
  • Pekka Neittaanmäki
    • 2
  1. 1.Mathematical InstituteCzechoslovak Academy of SciencesPraha 1Czechoslovakia
  2. 2.Department of MathematicsUniversity of JyväskyläJyväskylä 10Finland

Personalised recommendations