International Journal of Parallel Programming

, Volume 17, Issue 1, pp 43–58 | Cite as

Parallel rendering of fractal surfaces

  • Stephen L. Stepoway
  • Michael Christiansen


Fractal surfaces are a sueful modeling technique for terrain in computer graphics. Although an algorithm exists for ray tracing (Mandelbrot) fractal surfaces, the technique is computationally very expensive. The large degree of parallelism inherent in the problem suggests the use of parallel architectures for generating these images. We describe a parallel rendering algorithm for shared memory MIMD machines which takes advantage of image coherence to reduce computation. This algorithm has, on a Sequent Balance 2100 with 20 processors, demonstrated a near-linear speedup. We examine the possible synchronization bottlenecks by statically assigning different numbers of CPUs to sections of the screen.

Key words

Computer graphics fractals stochastic models parallel rendering ray tracing MIMD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot,Fractals: Form Chance, and Dimension, W. H. Freeman & Co., San Francisco, (1977).Google Scholar
  2. 2.
    B. B. Mandelbrot,The Fractal Geometry of Nature, W. H. Freeman & Co., San Francisco, (1982).Google Scholar
  3. 3.
    A. Fournier, Stochastic Modeling in Computer Graphics, Ph. D. Dissertation, University of Texas at Dallas, Richardson Texas, (1980).Google Scholar
  4. 4.
    A. Fourinier, D. Fussell, and L. Carpenter, Computer Rendering of Stochastic Models,Communications of the ACM, Vol. 25, No. 6 (June 1982).Google Scholar
  5. 5.
    B. B. Mandelbrot, Comment on Computer Rendering of Fractal Surfaces,Communications of the ACM, Vol. 25, No. 8 (August 1982).Google Scholar
  6. 6.
    T. Whitted, An Improved Illumination Model for Shaded Display,Communications of the ACM, Vol. 23, No. 6 (June 1980).Google Scholar
  7. 7.
    A. Fournier, D. Fussell, and L. Carpenter, Author's Reply,Communications of the ACM, Vol. 25, No. 8, (August 1982).Google Scholar
  8. 8.
    J. T. Kajiya, New Techniques for, Ray Tracing Procedurally Defined Surfaces,ACM Transactions on Graphics, Vol. 2, No. 3 (July 1983).Google Scholar
  9. 9.
    C. Bouville, Bounding Ellipsoids for Ray-Fractal Intersection,ACM Computer Graphics, Vol. 19, No. 3 (July 1985).Google Scholar
  10. 10.
    R. Detry, Computer Graphics Research at Sandia,IEEE Computer Graphics and Applications, Vol. 6, No. 1 (January 1986).Google Scholar
  11. 11.
    D. L. Wells and S. L. Stepoway, Ray Tracing Fractal Surfaces, Southern Methodist University Technical Report 86-CSE-1.Google Scholar
  12. 12.
    D. L. Wells and S. L. Stepoway, Ray Tracing Fractal Surfaces,SIAM Conference on Applied Geometry, (July 1987) (abstract).Google Scholar
  13. 13.
    B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian Motions, Fractional Noises and Applications,SIAM Review, Vol. 10, No. 4 (October 1968).Google Scholar
  14. 14.
    J. Amanatides, Ray Tracing With Cones,ACM Computer Graphics, Vol. 18, No. 3 (July 1984).Google Scholar
  15. 15.
    P. Bezier, Mathematical and Practical Possibilities in UNISURF, inComputer Aided Geometric Design, (eds.), R. E. Barnhill and R. F. Riesenfeld, Academic Press, (1974).Google Scholar
  16. 16.
    P. S. Heckbert and P. Hanrahan, Beam Tracing Polygonal Objects,ACM Computer Graphics, Vol. 18, No. 3 (July 1984).Google Scholar
  17. 17.
    B. B. Mandelbrot, On the Geometry of Homogeneous Turbulence, With Stress on the Fractal Dimension of Iso-Surfaces of Scalars,Journal of Fluid Mechanics, Vol. 72, No. 2 (December 1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Stephen L. Stepoway
    • 1
  • Michael Christiansen
  1. 1.Department of Computer Science and EngineeringSouthern Methodist UniversityDallas

Personalised recommendations