, Volume 171, Issue 1–2, pp 55–63

Immunolocalization of H+-ATPases in the plasma membrane of pollen grains and pollen tubes ofLilium longiflorum

  • G. Obermeyer
  • M. Lützelschwab
  • H. -G. Heumann
  • M. H. Weisenseel


A heterogeneous distribution of H+-ATPase was visualized in germinated pollen ofLilium longiflorum using monoclonal antibodies raised against plasma membrane H+-ATPase. Immunolocalization studies of protoplasts and subprotoplasts derived from pollen tubes and sectioned pollen grains and pollen tubes show that H+-ATPases are abundant in the plasma membrane of pollen grains but are absent or sparsely distributed in the plasma membrane of pollen tubes. This polar distribution of H+-ATPases is probably the basis of the endogenous current pattern measured in growing lily pollen and involved in pollen tube tip growth.


Immunolocalization H+-ATPase Tip growth Lilium longiflorum 



bovine serum albumine


N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid


2-(N-morpholino)-ethane sulphonic acid


phosphate buffered saline


piperazine-N,N′-bis(2-ethanesulfonic acid)




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armbruster BL, Weisenseel MH (1983) Ionic currents traverse growing hyphae and sporangia of the mycelial water moldAchlya debariana. Protoplasma 115: 65–69Google Scholar
  2. Bittisnich DJ, Williamson RE (1989) Tip-localised H+ fluxes and the applicability of the acid-growth hypothesis to tip-growing cells: control of chloronemal extension inFunaria hygrometrica by auxin and light. Planta 178: 96–102Google Scholar
  3. Blatt MR (1991) Ion channel gating in plants: physiological implications and integration for stomatal function. J Membr Biol 124: 95–113PubMedGoogle Scholar
  4. Briskin DP (1990) The plasma membrane H+-ATPase of higher plant cells: biochemistry and transport function. Biochim Biophys Acta 1019: 95–105Google Scholar
  5. Gordon LGM, Macknight ADC (1991) Contribution of secondary active transport processes to membrane potentials. J Membr Biol 120: 141–154PubMedGoogle Scholar
  6. Gow NAR, Kropf DL, Harold FM (1984) Growing hyphae ofAchlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J Gen Microbiol 130: 2967–2974PubMedGoogle Scholar
  7. Harold FM, Caldwell JH (1990) Tips and currents: electrobiology of apical growth. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, London, pp 59–89Google Scholar
  8. Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67: 488–492PubMedGoogle Scholar
  9. Kroh M, Knuiman B (1988) Development of subprotoplasts from in vitro-grown tobacco pollen tubes. Sex Plant Reprod 1: 103–113Google Scholar
  10. Kropf D (1986) Electrophysiological properties ofAchlya hyphae: ionic currents studied by intracellular potential recording. J Cell Biol 102: 1209–1216PubMedGoogle Scholar
  11. Kühtreiber WM, Jaffe LF (1990) Detection of extracellular Ca2+ gradients with a calcium-specific vibrating electrode. J Cell Biol 110: 1565–1573PubMedGoogle Scholar
  12. Lützelschwab M (1991) Biochemische und immunologische Charakterisierung von Funktionen der Plasmamembran vonCucurbita peo L.: Evidenz für Heterogenität der Plasmamembran. PhD thesis. Albert-Ludwigs-Universität, Freiburg, Federal Republic of GermanyGoogle Scholar
  13. Nuccitelli R (1978) Ooplasmic segregation and secretion in thePelvetia egg is accompanied by membrane-generated electrical current. Dev Biol 62: 13–33PubMedGoogle Scholar
  14. Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56: 319–327PubMedGoogle Scholar
  15. Pratt LH, Coleman RA (1974) Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody labelling method. Amer J Bot 61: 195–202Google Scholar
  16. Racusen RH, Ketchum KA, Cooke TJ (1988) Modification of extracellular electric and ionic gradients preceding the transition from tip growth to isodiametric expansion of the apical cell of the fern gametophyte. Plant Physiol 87: 69–77Google Scholar
  17. Reiss HD, Traxel K (1987) Hint of polar distribution in calcium channels under PIXE analysis. Biol Trace Element Res 13: 135–142Google Scholar
  18. Sanders D, Slayman CL (1989) Transport at the plasma membrane of plant cells: a review. In: Dainty J, DeMichelis MI, Marre E, Rasi-Caldogno F (eds) Plant membrane transport. Elsevier, Amsterdam, pp 3–11Google Scholar
  19. Serrano EE, Zeiger E (1989) Sensory transduction and electrical signalling in guard cells. Plant Physiol 91: 795–799Google Scholar
  20. Serrano R (1989) Structure and function of plasma membrane H+-ATPase. Annu Rev Plant Physiol Plant Mol Biol 40: 61–94Google Scholar
  21. Slone JH, Buckhout TJ (1991) Sucrose-dependent H+ transport in plasma membrane vesicles isolated from sugar beet leaves (Beta vulgaris). Planta 183: 584–589Google Scholar
  22. Taiz L (1984) Plant cell expansion: Regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35: 585–657Google Scholar
  23. Takeuchi Y, Schmid J, Caldwell JH, Harold FM (1988) Transcellular ion currents and extension ofNeuropora crassa hyphae. J Membr Biol 101: 33–41PubMedGoogle Scholar
  24. Tanaka J, Kizuma C, Ito M (1987) The isolation and culture of lily pollen protoplasts. Plant Sci 50: 205–211Google Scholar
  25. Villalba JM, Lützelschwab M, Serrano R (1991) Immunolocalization of plasma membrane H+-ATPase in maize coleoptiles and enclosed leaves. Planta 185: 458–461Google Scholar
  26. Weisenseel MH, Jaffe LF (1976) The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta 133: 1–7Google Scholar
  27. —, Kicherer RM (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 379–399 [Alfert M et al (eds) Cell biology monographs, vol 8]Google Scholar
  28. —, Wenisch HH (1980) The membrane potential of growing lily pollen. Z Pflanzenphysiol 99: 313–323Google Scholar
  29. —, Dorn A, Jaffe LF (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare). Plant Physiol 64: 512–518Google Scholar
  30. —, Nuccitelli R, Jaffe LF (1975) Large currents travers growing pollen tubes. J Cell Biol 66: 556–567PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. Obermeyer
    • 1
  • M. Lützelschwab
    • 2
  • H. -G. Heumann
    • 1
  • M. H. Weisenseel
    • 1
  1. 1.Botanisches Institut IUniversität KarlsruheKarlsruhe
  2. 2.Institut für Biologie IIIUniversität FreiburgFreiburg
  3. 3.Institut für PflanzenphysiologieUniversität SalzburgSalzburgAustria

Personalised recommendations