Advertisement

Mathematische Zeitschrift

, Volume 9, Issue 1–2, pp 14–27 | Cite as

Some problems of “partitio numerorum”: II. Proof that every large number is the sum of at most 21 biquadrates

  • G. H. Hardy
  • J. E. Littlewood
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; I: A new solution of Waring's Problem, Göttinger Nachrichten 1920, S. 33–54. We shall refer to this memoir as W. P.Google Scholar
  2. 2).
    A. J. Kempner, Über das Waringsche Problem und einige Verallgemeinerungen, Inaugural-Dissertation, Göttingen 1912.Google Scholar
  3. 3).
    W. S. Baer, Beiträge zum Waringschen Problem, Inaugural-Dissertation, Göttingen 1913.Google Scholar
  4. 4).
    The formula (2. 11) would lead only toG(4)≦33, in itself a new result.Google Scholar
  5. 5).
    For a formal proof of this result see D. Cauer, Neue Anwendungen der Pfeifferschen Methode zur Abschätzung zahlentheoretischer Funktionen, Inaugural-Dissertation, Göttingen 1914, S. 38. Fork=2 (when the result includesa fortiori the corresponding results for 4, 6, ...) see E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Göttinger Nachrichten, 1912, S. 750.Google Scholar
  6. 6).
    The symbol π is used in this sense down to the end of 5. 2, after which it is used in the ordinary sense.Google Scholar
  7. 7).
    It should be observed that, owing to the vanishing ofA π ak andA π ak+μ whenn does not satisfy certain congruence conditions, χπ is in all cases afinite series; but this is irrelevant for our argument.Google Scholar
  8. 8).
    See H. Weber, Lehrbuch der Algebra, Bd.1, S. 584. In Weber's notation,S p is one of the numbers\(\zeta = 4\eta + 1 = \sqrt n + (i,\eta ) + ( - i,\eta )\) Google Scholar
  9. 9).
    From this point onwards π is used in the ordinary sense.Google Scholar
  10. 10).
    Weber, l. c. Lehrbuch der Algebra, Bd.1, p. 584.Google Scholar
  11. 11).
    See however the following note of Herr Ostrowski.Google Scholar
  12. 12).
    The accompanying asymptotic formula is of course new.Google Scholar

Copyright information

© Springer-Verlag 1921

Authors and Affiliations

  • G. H. Hardy
    • 1
  • J. E. Littlewood
    • 2
  1. 1.Oxford
  2. 2.Cambridge

Personalised recommendations