Some problems of “partitio numerorum”: II. Proof that every large number is the sum of at most 21 biquadrates
Article
Received:
- 102 Downloads
- 7 Citations
Preview
Unable to display preview. Download preview PDF.
References
- 1).G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; I: A new solution of Waring's Problem, Göttinger Nachrichten 1920, S. 33–54. We shall refer to this memoir as W. P.Google Scholar
- 2).A. J. Kempner, Über das Waringsche Problem und einige Verallgemeinerungen, Inaugural-Dissertation, Göttingen 1912.Google Scholar
- 3).W. S. Baer, Beiträge zum Waringschen Problem, Inaugural-Dissertation, Göttingen 1913.Google Scholar
- 4).The formula (2. 11) would lead only toG(4)≦33, in itself a new result.Google Scholar
- 5).For a formal proof of this result see D. Cauer, Neue Anwendungen der Pfeifferschen Methode zur Abschätzung zahlentheoretischer Funktionen, Inaugural-Dissertation, Göttingen 1914, S. 38. Fork=2 (when the result includesa fortiori the corresponding results for 4, 6, ...) see E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Göttinger Nachrichten, 1912, S. 750.Google Scholar
- 6).The symbol π is used in this sense down to the end of 5. 2, after which it is used in the ordinary sense.Google Scholar
- 7).It should be observed that, owing to the vanishing ofA π ak andA π ak+μ whenn does not satisfy certain congruence conditions, χπ is in all cases afinite series; but this is irrelevant for our argument.Google Scholar
- 8).See H. Weber, Lehrbuch der Algebra, Bd.1, S. 584. In Weber's notation,S p,π is one of the numbers\(\zeta = 4\eta + 1 = \sqrt n + (i,\eta ) + ( - i,\eta )\) Google Scholar
- 9).From this point onwards π is used in the ordinary sense.Google Scholar
- 10).Weber, l. c. Lehrbuch der Algebra, Bd.1, p. 584.Google Scholar
- 11).See however the following note of Herr Ostrowski.Google Scholar
- 12).The accompanying asymptotic formula is of course new.Google Scholar
Copyright information
© Springer-Verlag 1921