Rheologica Acta

, Volume 29, Issue 5, pp 400–408 | Cite as

The relaxation of polymers with linear flexible chains of uniform length

  • M. Baumgaertel
  • A. Schausberger
  • H. H. Winter
Original Contributions


The analysis of dynamic mechanical data indicates that linear flexible polymer chains of uniform length follow a scaling relation during their relaxation, having a linear viscoelastic relaxation spectrum of the formH(λ) = n1G N 0 × (λ/λmax)n1 forλλmax. Data are well represented with a scaling exponent of about 0.22 for polystyrene and 0.42 for polybutadiene. The plateau modulusG N 0 is a material-specific constant and the longest relaxation time depends on the molecular weight in the expected way. At high frequencies, the scaling behavior is masked by the transition to the glassy response. Surprisingly, this transition seems to follow a Chambon-Winter spectrumH(λ) = Cλ−n2, which was previously adopted for describing other liquid/solid transitions. The analysis shows that the Rouse spectrum is most suitable for low molecular-weight polymersM ≈ M c , and that the de Gennes-Doi-Edwards spectrum clearly predicts terminal relaxation, but deviates from the observed behavior in the plateau region.

Key words

Relaxation spectrum monodisperse polymers scaling glass transition plateau modulus recoverable compliance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rouse PE (1953) J Chem Phys 21:1272Google Scholar
  2. 2.
    Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  3. 3.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ Press, IthacaGoogle Scholar
  4. 4.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  5. 5.
    Bird RB, Armstrong RC, Hassager O, Curtis CE (1977) Dynamics of polymeric liquid. Wiley, New YorkGoogle Scholar
  6. 6.
    Graessley WW (1982) Adv Polym Sci 47:67Google Scholar
  7. 7.
    Larson R (1987) Constitutive equations for polymer melts and solutions. Butterworths, LondonGoogle Scholar
  8. 8.
    Onogi S, Masuda T, Kitagawa K (1970) Macromolecules 3:109Google Scholar
  9. 9.
    Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Rheol Acta 24:220Google Scholar
  10. 10.
    Colby RH (1985) PhD Thesis. Northwestern UniversityGoogle Scholar
  11. 11.
    Baumgaertel M, Winter HH (1989) Rheol Acta 28:511Google Scholar
  12. 12.
    Schausberger A (1991) to be publishedGoogle Scholar
  13. 13.
    Chambon F, Winter HH (1985) Polym Bull 13:499Google Scholar
  14. 14.
    Winter HH, Chambon F (1986) J Rheol 30:367Google Scholar
  15. 15.
    Chambon F, Winter HH (1987) J Rheol 31:683Google Scholar
  16. 16.
    Schausberger A (1986) Rheol Acta 25:596Google Scholar

Copyright information

© Steinkopff 1990

Authors and Affiliations

  • M. Baumgaertel
    • 1
  • A. Schausberger
    • 2
  • H. H. Winter
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Physikalische ChemieJohannes-Kepler-UniversitätLinzAustria

Personalised recommendations