Archive for Mathematical Logic

, Volume 32, Issue 3, pp 203–221

Many simple cardinal invariants

Article

Summary

Forg<f in ωω we definec(f,g) be the least number of uniform trees withg-splitting needed to cover a uniform tree withf-splitting. We show that we can simultaneously force ℵ1 many different values for different functions (f,g). In the language of [B1]: There may be ℵ1 many distinct uniformII11 characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bl] Blass, A.: Simple cardinal invariants. (preprint)Google Scholar
  2. [v Do] van Douwen, E.K.: The integers and topology. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology. North-Holland: Amsterdam New York Oxford 1984Google Scholar
  3. [CN] Comfort, W.W., Negrepontis, S.: Theory of ultrafilters. Berlin Heidelberg New York: Springer 1974Google Scholar
  4. [Mi] Miller, A.: Some properties of measure and category. Trans. Am. Math. Soc.266, 93–114 (1981)Google Scholar
  5. [Sh 470] Shelah, S.: Vive la difference! In: Judah, H., Just, W., Woodin, W.H. (eds.) Proceedings of the MSRI Logic Year 1989/90Google Scholar
  6. [Sh 448a] Shelah, S.: Notes on many cardinal invariants. May 1991, (unpublished)Google Scholar
  7. [Va] Vaughan, J.E.: Small uncountable cardinals and topology. In: van Mill, J., Reeds, G. (eds.) Open problems in topology, pp. 195–218. Amsterdam New York Oxford Tokyo: North-Holland 1990Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  1. 1.Department of MathematicsBar Ilan UniversityRamat GanIsrael
  2. 2.Department of MathematicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations