Plant and Soil

, Volume 36, Issue 1–3, pp 271–282 | Cite as

Root exudates of plants

IV. Differences in chemical composition of seed and seedlings exudates
  • V. Vančura
  • Anna Hanzlíková


Comparisons have been made of the amount and composition of seed and seedling exudates in barley, wheat, cucumber, and bean. Except in the case of wheat a greater proportion of the total nitrogen content in the seed exudates was formed by protein and peptide nitrogen than by nitrogen of free amino acids. In contrast, the greater part of the total nitrogen in the exudates of seedlings was formed by free amino acid nitrogen, except in the case of barley. Peptides represented 8 to 26 per cent of the protein and peptide fraction in seed exudates, the highest amount being found in bean. On an equal weight basis, the spectrum of amino acids released from seeds and seedlings differed little between barley, wheat and cucumber; greater differences were observed in bean exudates. Seedlings exuded reducing substances to a considerably greater extent than seeds. The spectrum of reducing sugars in seed and root exudates differed greatly, especially in the case of keto sugars. Differences in the organic acid spectra were small, except for bean plants, the seedling exudate of which contained more organic acids with a richer spectrum than seed exudate. Both seeds and seedlings of cucumber exuded a small quantity and a poor spectrum of organic acids.


Peptide Sugar Organic Acid Total Nitrogen Nitrogen Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayers, W. A. and Thornton, R. H., Exudation of amino acids by intact and demaged roots of wheat and peas. Plant and Soil28, 193–207 (1968).CrossRefGoogle Scholar
  2. 2.
    Börner, H., Die Ausscheidung organischer Verbindungen aus den Samen von Roggen (Secale cereale L.), Weizen (Triticum aestivum L.) und Gerste (Hordeum vulgare L.) während der Quellung. Naturwiss.42, 48 (1955).Google Scholar
  3. 3.
    Börner, H., Die Abgabe organischer Verbindungen aus den Karyopsen, Wurzeln und Ernterückständen von Roggen, Weizen und Gerste und ihre Bedeutung bei den gegenseitigen Beeinflussung der höheren Pflanzen. Beiträge Biol Pflanzen33, 33–83 (1956).Google Scholar
  4. 4.
    Karbachsch, M., Phenolische Komplexbildner und ihr Einfluss auf die Löslichkeit von Calcium, Eisen- und Aluminiumphosphaten. Dissertation, Göttingen (1966).Google Scholar
  5. 5.
    Kirk, P. I., The chemical determination of protein. Advance Protein Chem.3, 138–167 (1947).Google Scholar
  6. 6.
    Liskens, H. F. and Knapp, R., Über die Ausscheidung von Aminosäuren in reinen und gemischten Beständen verschiedener Pflanzenarten. Planta45, 106–117 (1955).Google Scholar
  7. 7.
    Ma, T. S. and Zazaga, G., Micro-Kjeldahl determination of nitrogen. Ind. Eng. Chem. Anal. Ed.14, 280–282 (1942).CrossRefGoogle Scholar
  8. 8.
    Macura, J., Physiological studies of rhizosphere bacteria. Int. Symposium Ecology of Soil Bacteria, pp. 379–395, Liverpool (1968).Google Scholar
  9. 9.
    Mikeš, O., and Šorm, F., Isolierung eines Wachstumfaktors mit Peptidcharakter aus enzymatischen Caseinhydrolysat. Collection Czech. Chem. Comm.24, 1897–1907 (1959).Google Scholar
  10. 10.
    Müller, H., Untersuchungen zur Frage wechselseitiger Beziehungen zwischen keimenden Samen und Mikroorganismen in Samennähe. Arch. Mikrobiol.41, 351–382 (1962).CrossRefGoogle Scholar
  11. 11.
    Nielson, N., A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153, 375–380 (1944).Google Scholar
  12. 12.
    Rosen, H., A modified minhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys.67, 10–15 (1957).PubMedGoogle Scholar
  13. 13.
    Rovira, A. D. and Brisbane, P. G., Numerical taxonomy and soil bacteria. Int. Symposium Ecology of Soil Bacteria, pp. 337–350, Liverpool (1968).Google Scholar
  14. 14.
    Schroth, M. N., Tousson, T. A. and Snyder, W. O., Effect of certain constituents of bean exudates on germination of chlamydospores of Fusarium solani f. phaseoli in soil. Phytopathology53, 809–812 (1963).Google Scholar
  15. 15.
    Somogyi, M., A new reagent for the determination of sugars. J. biol. Chem. 160, 61–68 (1945).Google Scholar
  16. 16.
    Staněk, M. and Lasík, J., The occurrence of microorganisms parasitizing on the over-ground parts of plants in the rhizosphere. Plant Microbes Relationships. pp. 300–307, Publ. House Czechoslovak Acad. Sci., Prague (1965).Google Scholar
  17. 17.
    Vanćura, V., Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant and Soil 21, 231–248 (1964).Google Scholar
  18. 18.
    Vanćura, V., Root exudates of plants. III. Effect of temperature and “cold shock” on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant and Soil27, 319–328 (1967).Google Scholar
  19. 19.
    Vanćura, V., and Garcia, J. L., Root exudates of reversibly wilted millet plants (Panicum miliaceum L.) Ecol. Plant.4, 93–98 (1969).Google Scholar
  20. 20.
    Vanćura, V., and Hanzlíková, A., Nutritional requirements of Xanthomonas phaseoli var. fuscans. Fol. microbiol. (Prague)14, 27–31 (1969).Google Scholar
  21. 21.
    Vančura, V., and Hovadík, A., Root exudates of plants II. Composition of root exudates of some vegetables. Plant and Soil22, 21–32 (1965a).Google Scholar
  22. 22.
    Vančura, V. and Hovadík, A., Composition of root exudates in the course of plant development. Plant Microbes Relationships, pp. 21–25, Publ. House Czechoslovak. Acad. Sci., Prague, 1965b.Google Scholar
  23. 23.
    Vančura, V., Staněk, M. and Hanzlíková, A., Effect of seed and root exudates on the growth of Xanthomonas phaseoli var. fuscans. Fol. Microbiol. (Prague)14, 23–26 (1969).Google Scholar

Copyright information

© Martinus Nijhoff 1972

Authors and Affiliations

  • V. Vančura
    • 1
  • Anna Hanzlíková
    • 1
  1. 1.Department of Soil MicrobiologyInstitute of Microbiology, Czechoslovak Academy of SciencesPraha 4

Personalised recommendations