Advertisement

Microsystem Technologies

, Volume 1, Issue 4, pp 191–195 | Cite as

Monolithic bridge-on-diaphragm structure for pressure sensor applications

  • H. -J. Wagner
  • A. Schumacher
  • M. Alavi
  • T. Fabula
  • B. Schmidt
Technical Papers
  • 50 Downloads

Abstract

Monolithically clamped bridge-on-diaphragm (BOD) structures for pressure sensor applications were fabricated by means of Nd: YAG-laser micromachining and anisotropic KOH-etching techniques. The pressure/frequency-dependence of the BOD structures was measured by acoustical resonance excitation and optical detection of the microbridge and applying an external pressure between-0.8 bar and+1 bar to the diaphragm. In this vacuum/atmospheric pressure range the pressure/frequency-characteristic is quite linear with a sensitivity of about 4.5 kHz/bar and a fundamental bridge resonance frequency of 82 kHz. Extensive finite-element modelling has been carried out to optimize the geometrical dimensions of the BOD structures with respect to maximum sensitivity and pressure range. Using the same BOD structure layout it is possible to realize pressure sensors with applications ranging from 0.5 to 12 bar by only varying the thickness of the diaphragm. Varying the BOD structure layout to smaller dimensions the pressure sensors can be operated up to 100 bar with sensitivities of about 141 Hz/bar.

Keywords

Operating Procedure Resonance Frequency Geometrical Dimension Pressure Sensor Pressure Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi, M.; Büttgenbach, S.; Schumacher, A.; Wagner, H.-J.: (1991) New microstructures in silicon using laser machining and anisotropic etching. Proc. Micro System Technologies'91, Berlin, Oct. 29-Nov. 1, pp. 322–324Google Scholar
  2. Alavi, M.;Fabula T.;Schumacher, A.;Wagner, H.-J.: (1993) Monolithic microbridges in silicon using laser machining and anisotropic etching. Sensors and Actuators A, 37–38, pp. 661–665Google Scholar
  3. Buser, R.A.;Schultheis, L.;de Rooij, N.F.: (1991) Silicon pressure sensor based on a resonating element. Sensors and Actuators A, 25–27, pp. 717–722Google Scholar
  4. Fabula, T.;Wagner, H.-J.;Schmidt, B.;Büttgenbach, S.: (1994) Triple-beam resonant silicon force sensor based on piezoelectric thin films. Sensors and Actuators A, 41–42, pp. 375–380Google Scholar
  5. Greenwood, J.C.;Satchell, D.W.: (1988) Miniature silicon resonant pressure sensor. IEE Proc., 135 (5), pp. 369–372Google Scholar
  6. Ikeda, K.;Kuwayama, H.;Kobayashi, T.;Watanabe, T.;Nishikawa, T.;Yoshida, T.;Harada, K.: (1990) Silicon pressure sensor integrates resonant strain gauge on diaphragm. Sensors and Actuators, A21–A23, pp. 146–150Google Scholar
  7. Prak, A.;Fabula, T.;Wagner, H.-J.;Elwenspoek, M.: (1994) Resonant microsensors. Techn. Digest of the UETP-MEMS Course, ed. FSRM, Neuchâtel, SwitzerlandGoogle Scholar
  8. Schumacher, A.; Alavi, M.; Fabula, T.; Schmidt, B.; Wagner, H.-J.: (1994) Monolithic bridge-on-diaphragm microstructure for sensor applications. Proc. Micro System Technologies '94, Berlin, Germany, Oct. 19–21, pp. 309–316Google Scholar
  9. Tilmans, H.A.C.;Elwenspoek, M.;Fluitman, J.H.J.: (1992) Micro resonant force gauges. Sensors and Actuators A, 30, pp. 35–53Google Scholar
  10. Thornton, K.E.B.;Uttamchandani, D.;Culshaw, B.: (1990) A sensitive optically excited resonator pressure sensor. Sensors and Actuators A, 24, pp. 15–19Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. -J. Wagner
    • 1
  • A. Schumacher
    • 1
  • M. Alavi
    • 1
  • T. Fabula
    • 1
  • B. Schmidt
    • 1
  1. 1.TCN CAE-Technologien+Systeme GmbHDortmundGermany

Personalised recommendations