Mathematische Annalen

, Volume 138, Issue 1, pp 80–102 | Cite as

Groups represented by homeomorphism groups I

  • J. de Groot


Homeomorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G.: Sobre los grupos de automorfismos. Rev. Union mat. Argent.11, 155–157 (1945).Google Scholar
  2. [2]
    Bruijn, N. G. de: Embedding theorems for infinite groups. Indag. Math.19, 560–569 (1957).Google Scholar
  3. [3]
    Coxeter, H. S. M., andW. O. J. Moser: Generators and relations for discrete groups. Berlin 1957.Google Scholar
  4. [4]
    Dehn, M.: Math. Ann.69, 137–168 (1910);71, 116–144 (1912).Google Scholar
  5. [5]
    Fine, N. J., andG. E. Schweigert: On the group of homeomorphisms of an arc. Ann. Math.62, 237–253 (1955).Google Scholar
  6. [6]
    Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Comp. Math.6, 239–250 (1938).Google Scholar
  7. [7]
    Frucht, R.: Sobre la construccion de sistemas parcialmente ordenados con grupo de automorfismos dedo. Rev. Union mat. Argent.13, 12–18 (1948).Google Scholar
  8. [8]
    Frucht, R.: Graphs of degree three with a given abstract group. Canad. J. Math.1, 365–378 (1949).Google Scholar
  9. [9]
    Gelfond, I., andA. Kolmogorov: On rings of continuous functions on topological spaces. Doklady Acad. Sci. USSR22, 11–15 (1939).Google Scholar
  10. [10]
    Gillman, L., andM. Jerison: Rings of continuous functions. New York: Van Nostrand. To appear.Google Scholar
  11. [11]
    Groot, J. de: Continuous mappings of a certain family. Fund. Math.42, 203–206 (1955).Google Scholar
  12. [12]
    Groot, J. de: Automorphism groups of rings. Abstract of short communication Int. Congr. of Math., Edinburgh1958, 18.Google Scholar
  13. [13]
    Groot, J. de, andR. J. Wille: Rigid continua and topological group-pictures. Archiv der Math.9, 441–446 (1958).Google Scholar
  14. [14]
    Jónsson, B.: A Boolean algebra without proper automorphisms. Proc. Amer. math. Soc.2, 766–770 (1951).Google Scholar
  15. [15]
    Jónsson, B.: Universal relational systems (abstract). Bull. Amer. math. Soc.64, 403 (1956).Google Scholar
  16. [16]
    Katětov, M.: Remarks on Boolean algebras. Coll. Math.2, 229–235 (1951).Google Scholar
  17. [17]
    König, D.: Theorie der endlichen und unendlichen Graphen. Leipzig 1936.Google Scholar
  18. [18]
    Kuratowski, C.: Topologie. I. (édition troisième), Warszawa 1952.Google Scholar
  19. [19]
    Pursell, L. E.: An algebraic characterization of fixed ideals in certain function rings. Pacific J. Math.6, 963–969 (1956).Google Scholar
  20. [20]
    Rieger, L.: Some remarks on automorphisms in Boolean algebras. Fund. Math.38, 209–216 (1951).Google Scholar
  21. [21]
    Schreier, J., andS. Ulam: Über die Permutationsgruppe der natürlichen Zahlenfolge. Studia math.4, 134–141 (1933).Google Scholar
  22. [22]
    Stone, M. H.: Applications of the theory of Boolean rings to general topology. Trans. Amer. math. Soc.41, 375–481 (1937).Google Scholar
  23. [23]
    Vries, H. de: Topological groups with a small number of automorphisms. To be publishedGoogle Scholar
  24. [24]
    Vries, H. de, andA. B. de Miranda: Groups with a small number of automorphisms. Math. Z.68, 450–464 (1957).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • J. de Groot
    • 1
  1. 1.Amsterdam

Personalised recommendations