Overexpression of Gsα subunit in thyroid tumors bearing a mutated Gsα gene

  • Victor N. Gorelov
  • Kristoffel Dumon
  • Natalie S. Barteneva
  • Dieter Palm
  • Hans-Dieter Röher
  • Peter E. Goretzki
Original Paper Experimental Oncology


Point mutations occurring at codon 201 of the gene coding for the α subunit of the stimulatory G protein impair intrinsic GTPase activity and lead to a constitutive activation of adenylate cyclase. We have examined thyroid follicular and papillary carcinomas and follicular adenomas and found samples that bear this mutation at codon 201 of the Gsα gene. Both mutation-positive and mutation-negative tissue samples were investigated for the level of Gsα expression relative to a pool of normal thyroid tissue, using immunoblotting against two (mid-region-specific and C-end-specific) antipeptide antibodies. Using 8000g and 100 000g membrane fractions of homogenized tissues we have demonstrated that the Gsα proteins in normal ad neoplastic thyroid tissues are represented by three isoforms: 43 kDa, 45 kDa and 52 kDa. We have quantified and compared the amount of Gsα protein and find it is overexpressed in mutation-bearing tissue samples.

Key words

Gsα gene Expression Point mutation Immunoblotting Thyroid tumors 


Gs protein

Stimulatory heterotrimeric guanine-nucleotide-binding protein


5-bromo-4-chloro-3-indoxyl phosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for divers cell functions. Nature 348:125–132Google Scholar
  2. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127Google Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  4. Bray P, Carter A, Simons C, Guo V, Pucett C, Camholz J, Spiegel A, Nirenberg M (1987) Human cDNA clones for an alpha subunit of Gi signal-transduction protein. Proc Natl Acad Sci USA 84:5115–5119Google Scholar
  5. Codina J, Kimura S, Kraud-Friedman N (1988) Demonstration of the presence of G-proteins in hepatic microsomal fraction. Biochem Biophys Res Commun 150:848–852Google Scholar
  6. Clark OH, Gerend PL, Goretzki PE, Nissenson PA (1983) Characterization of the thyrotropin receptor-adenylate cyclase system in neoplastic human thyroid tissue. J Clin Endocrinol Metab 57:140–147Google Scholar
  7. Clark OH, Gerend PL, Nissenson RA (1986) Mechanisms for increased adenylate cyclase responsiveness to TSH in neoplastic human thyroid tissue. World J Surg 8:446–473Google Scholar
  8. Delemer B, Dib K, Patey M, Jacquemin C, Correze C (1992) Modification of the amounts of G-proteins and of the activity of adenylyl cyclase in human benign thyroid tissues. J Endocrinol 132:477–485Google Scholar
  9. Freissmuth M, Casey PJ, Gilman AG (1989) G-proteins control divers pathways of transmembrane signaling. FASEB J 3:2125–2131Google Scholar
  10. Gärtner R, Bechtner G, Stübner D, Greil W (1990) Growth regulation of porcine thyroid follicules in vitro by growth factor. Horm Metab Res Suppl 23:61–67Google Scholar
  11. Gilman AG (1987) G proteins: transducers of receptor generated signals. Annu Rev Biochem 56:615–649Google Scholar
  12. Gorelov VN, Röher H-D, Goretzki PE (1994) A method to increase the sensitivity of mutation specific oligonucleotide hybridization using asymmetric polymerase chine reaction. Biochem Biophys Res Commun 200:365–369Google Scholar
  13. Goretzki PE, Lyons J, Stacy-Phipps S, Rosenau W, Demeure M, Clark OH, McCormic F, Röher H-D, Bourne HR (1992) Mutational activity of RAS and GSP oncogenes in differentiated thyroid cancer and their biological implications. World J Surg 16:576–581Google Scholar
  14. Harris PE, Alexander JM, Bikkal HA, Hsu DW, Hedley-Whyte ET, Klibanski A, Jameson JL (1992) Glyicoprotein hormone alpha-subunit production in somatotroph adenomas with and without Gsα alpha mutations. J Clin Endocrinol Metab 75:918–923Google Scholar
  15. Hiraguchi K, Rodbell M (1990) Isoprotorenol stimulates shift of G proteins from plasma membrane to pinocytic vesicles in rat adipocytes: a possible means of signal dissemination. Proc Natl Acad Sci USA 87:1208–1212Google Scholar
  16. Inageda K, Nishina H, Tanuma S (1991) Mono-ADP-ribosyilation of Gs by an eucaryotic arginine-specific ADP-ribosyltransferase stimulates the adenylate cyclase system. Biochem Biophys Res Commun 176:1014–1019Google Scholar
  17. Ishikawa Y, Bianchi C, Nadal-Ginard B, Homcy CJ (1990) Alternative promoter and 5′-exon generate a novel Gs alpha mRNA. J Biol Chem 265:8458–8462Google Scholar
  18. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature 340:692–696Google Scholar
  19. Levis MJ, Bourne HR (1992) Activation of the alpha subunit of Gs in intact cells alters its abundence, rate of degradation and membrane activity. J Cell Biol 119:1297–1307Google Scholar
  20. Lynch CJ, Morbach L, Blackmore PF, Exton JH (1986) α-subunits of Ns are released from the plasma membrane following cholera toxin activation. FEBS Lett 200:333–336Google Scholar
  21. Masters SB, Miller RT, Chi MH, Chang FH, Beiderman B, Lopez NG, Bourne HR (1989) Mutations in GTP-binding site of Gsα after stimulation of adenylyl cyclase. J Biol Chem 264:15467–15474Google Scholar
  22. Mattera R, Graziano MP, Yatani A, Zhou Z Graf R, Codina J, Birnbaumer L, Gilman AG, Brown AM (1989) Splice variants of the alpha subunit of G protein Gs activate both adenylyl cyclase and calcium channals. Science 243:804–807Google Scholar
  23. Menhaut C, Roger PP, Reuse S, Dumont JE (1991) Activation of the cyclic AMP cascade as an oncogenic mechanism: the thyroid example. Biochimie 73:29–36Google Scholar
  24. Milligan G, Unson CG, Wakelam MJ (1989) Cholera toxin treatment produces down-regulation of the alpha-subunit of the stimulatory guanine-nucleotide-binding protein (Gs). Biochem J 262:643–649Google Scholar
  25. Müller A, Gorelov V, Möllner S, Röher H-D, Goretzki PE (1994) Importance of adenylate-cyclase and G-protein mutations for the prognosis of differentiated thyroid tumors (in German) In: Trede M, Siewert JR, Hartel W (eds.) Chirurgisches Forum 1994 für experimentelle und klinische Forschung”, Springer, Berlin, Heidelberg New York, pp 349–353Google Scholar
  26. Murakami T, Katada T, Yasuda H (1987) Reduction in the activity of the stimulatory guanine nucleotide-binding protein in the myocardium of spontaneously hypertensive rats. J Mol Cell Cardiol 19:199–208Google Scholar
  27. Neer EG, Clapham DE (1988) Roles of G-protein subunits in transmembrane signalling. Nature 333:129–134Google Scholar
  28. Ott L (1988) An introduction to statistical methods and data analysis, PKSW-Kent, BostonGoogle Scholar
  29. Palm D, Münch G, Malek D, Dees C, Hekman M (1990) Identification of a GS-protein coupling domain to the beta-adrenoreceptor using site-specific peptides. Carboxyl terminus of Gs-alpha is involved in coupling to beta-adrenoreceptors. FEBS Lett 261:294–298Google Scholar
  30. Ransas LA, Svoboda P, Jasper JR, Insel PA (1989) Stimulatrion of beta-adrenergic receptors of S49 lymphoma cells redistributes the alpha subunit of the stimulatory G protein between cytosol and membranes. Proc Natl Acad Sci USA 86:7900–7903Google Scholar
  31. Roger PP, Taton M, Van Svande J, Dumont JE (1988) Mitogenic effect of thyrotropin and adenosine 3′5′-monophosphate in differentiated normal human thyroid cells in vitro. J Clin Endocrinol Metab 66:1158–1165Google Scholar
  32. Roth DA, Urasawa K, Leiber D, Insel PA, Hammond HK (1992) A substantial proportion of cardiac Gs is not associated with the plasma membrane. FEBS Lett 296:46–50Google Scholar
  33. Saunier B, Dib K, Delemer B, Jaquemin C, Correze C (1990) Cyclic AMP regulation of Gs protein: thyrotropin and forskolin increase the quantity of stimulatory guanine nucleotide-binding proteins in cultured thyroid follicules. J Biol Chem 265:19942–19946Google Scholar
  34. Scherer NM, Toro MIY, Entman ML, Birnbaumer L (1987) G-protein distribution in canine cardiac sarcoplasmic reticulum and sarcolemma: comparison to rabbit skeletal muscle membranes and to brain and erythrocyte G-proteins. Arch Biochem Biophys 259:431–440Google Scholar
  35. Schubert B, Van Dongen AM, Kirsch GE, Brown AM (1989) β-Adrenergic inhibition of cardiac sodium channels by dual G-proten pathways. Science 245:516–519Google Scholar
  36. Simonds WF, Goldsmith PK, Woodard CJ, Unson CG Spiegel AM (1989) Receptor and effector interactions of Gs. Functional studies with antibodies to the alpha S carboxyl-terminal decapeptide. FEBS Lett 249:189–194Google Scholar
  37. Siperstein AE, Miller RA, Landis C, Bourne H, Clark OH (1991) Increased stimulatory G protein in neoplastic human thyroid tissues. Surgery 110:949–955Google Scholar
  38. Söling A, Walther C, Rosenthal W (1991) Identification of proteins resembling G-protein alpha subunits in locust muscle. Biochem Biophys Res Commun 180:1075–1082Google Scholar
  39. Stryer L, Bourne HR (1986) G proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–419Google Scholar
  40. Suarez HG, du Villard JA du, Caillou B, Schlumberger M, Permentier C, Monier R (1991) GSP mutations in human thyroid tumors. Oncogene 6:677–679Google Scholar
  41. O'Sullivan C, Barton CM, Staddon SL, Brown CL, Lemoine NR (1991) Activating point mutations of thegsp oncogene in human thyroid adenomas. Mol Carcinog 45:345–349Google Scholar
  42. Towbin H, Staehlelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacriylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci. USA 76:4350–4354Google Scholar
  43. Vallar L, Spada A, Ginnatassio G (1987) Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330:566–568Google Scholar
  44. Wynford-Thomas D (1993) Molecular basis of epithelial tumorogenesis: the thyroid model. Crit Rev Oncogenet 4:1–23Google Scholar
  45. Wynford-Thomas D, Smith P, Williams ED (1987) Proliferative response to cyclic AMP elevation of thyroid epithelium in suspension culture. Mol Cell Endocrinol 51:163–166Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Victor N. Gorelov
    • 1
  • Kristoffel Dumon
    • 1
  • Natalie S. Barteneva
    • 1
  • Dieter Palm
    • 2
  • Hans-Dieter Röher
    • 1
  • Peter E. Goretzki
    • 1
  1. 1.Department of Surgery AHeinrich-Heine-University, Gebäude 23.12.01/Raum 81, Düsseldorf UniversitätDüsseldorfGermany
  2. 2.Department of BiochemistryUniversity of WürzburgGermany

Personalised recommendations