Advertisement

Mathematische Annalen

, Volume 240, Issue 2, pp 165–175 | Cite as

Free actions of some finite groups onS3. I

  • J. H. Rubinstein
Article

Keywords

Finite Group Free Action Group onS3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Epstein, D.: Curves on 2-manifolds and isotopies. Acta Math.115, 83–107 (1966)Google Scholar
  2. 2.
    Heil, W.: 3-manifolds that are sums of solid tori and Seifert fibre spaces. Proc. Amer. Math. Soc.37, 609–614 (1973)Google Scholar
  3. 3.
    Lee, R.: Semicharacteristic classes. Topology12, 183–200 (1973)Google Scholar
  4. 4.
    Livesay, G.: Fixed point free involutions on the 3-sphere. Ann. of Math.72, 603–611 (1960)Google Scholar
  5. 5.
    Madsen, I., Thomas, C.B., Wall, C.T.C.: The topological spherical space form problem. Il. Existence for free actions. Topology15, 375–382 (1976)Google Scholar
  6. 6.
    Orlik, P.: Seifert manifolds. Lecture notes in mathematics 291. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  7. 7.
    Petrie, T.: Free metacyclic group actions on homotopy spheres. Ann. of Math.94, 108–124 (1971)Google Scholar
  8. 8.
    Rice, P.: Free actions ofZ 4 onS 3. Duke Math. J.36, 749–751 (1969)Google Scholar
  9. 9.
    Ritter, G.: Free actions ofZ 8 onS 3. Trans. Amer. Math. Soc.181, 195–212 (1973)Google Scholar
  10. 10.
    Rubinstein, J.H.: On 3-manifolds that have finite fundamental group and contain Klein bottles. Trans. Amer. Math. Soc. (to appear)Google Scholar
  11. 11.
    Thomas, C.B.: On Poincaré 3-complexes with binary polyhedral fundamental group. Math. Ann.226, 207–221 (1977)Google Scholar
  12. 12.
    Thomas, C.B.: Homotopy classification of free actions by finite groups onS 3 (to appear)Google Scholar
  13. 13.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math.87, 56–88 (1968)Google Scholar
  14. 14.
    Wolf, J.: Spaces of constant curvature. New York: MacGraw-Hill 1967Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. H. Rubinstein
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations