Mathematische Annalen

, Volume 240, Issue 2, pp 165–175 | Cite as

Free actions of some finite groups onS3. I

  • J. H. Rubinstein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epstein, D.: Curves on 2-manifolds and isotopies. Acta Math.115, 83–107 (1966)Google Scholar
  2. 2.
    Heil, W.: 3-manifolds that are sums of solid tori and Seifert fibre spaces. Proc. Amer. Math. Soc.37, 609–614 (1973)Google Scholar
  3. 3.
    Lee, R.: Semicharacteristic classes. Topology12, 183–200 (1973)Google Scholar
  4. 4.
    Livesay, G.: Fixed point free involutions on the 3-sphere. Ann. of Math.72, 603–611 (1960)Google Scholar
  5. 5.
    Madsen, I., Thomas, C.B., Wall, C.T.C.: The topological spherical space form problem. Il. Existence for free actions. Topology15, 375–382 (1976)Google Scholar
  6. 6.
    Orlik, P.: Seifert manifolds. Lecture notes in mathematics 291. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  7. 7.
    Petrie, T.: Free metacyclic group actions on homotopy spheres. Ann. of Math.94, 108–124 (1971)Google Scholar
  8. 8.
    Rice, P.: Free actions ofZ 4 onS 3. Duke Math. J.36, 749–751 (1969)Google Scholar
  9. 9.
    Ritter, G.: Free actions ofZ 8 onS 3. Trans. Amer. Math. Soc.181, 195–212 (1973)Google Scholar
  10. 10.
    Rubinstein, J.H.: On 3-manifolds that have finite fundamental group and contain Klein bottles. Trans. Amer. Math. Soc. (to appear)Google Scholar
  11. 11.
    Thomas, C.B.: On Poincaré 3-complexes with binary polyhedral fundamental group. Math. Ann.226, 207–221 (1977)Google Scholar
  12. 12.
    Thomas, C.B.: Homotopy classification of free actions by finite groups onS 3 (to appear)Google Scholar
  13. 13.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math.87, 56–88 (1968)Google Scholar
  14. 14.
    Wolf, J.: Spaces of constant curvature. New York: MacGraw-Hill 1967Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. H. Rubinstein
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations