Mathematische Annalen

, Volume 249, Issue 3, pp 225–242

An abelian quotient of the mapping class groupIg

  • Dennis Johnson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Birman, J.:Braids, links, and mapping class groups. Annals of Math. Studies No. 82. Princeton: Princeton Univ. Press 1975Google Scholar
  2. [BC]
    Birman, J., Craggs, R.: The μ-invariant of 3-manifolds and certain structural properties of the group of Homeomorphisms of a closed, oriented 2-manifold. Trans. Amer. Math. Soc.237, 283–309 (1978)Google Scholar
  3. [C 1]
    Chillingworth, D.R.J.: Winding numbers on surfaces. I. Math. Ann.196, 218–249 (1972)Google Scholar
  4. [C 2]
    Chillingworth, D.R.J.: Winding numbers on surfaces. II. Math. Ann.199, 131–153 (1972)Google Scholar
  5. [J 1]
    Johnson, D.: Homeomorphisms of a surface which act trivially on homology. Proc. AMS75, 119–125 (1979)Google Scholar
  6. [J 2]
    Johnson, D.: Quadratic forms and the Birman-Craggs homomorphisms. Amer. Math. Soc. (to appear)Google Scholar
  7. [M]
    Milnor, J.: Introduction to AlgebraicK-theory. Annals of Math. Studies No. 72. Princeton: Princeton Univ. Press 1971Google Scholar
  8. [MKS]
    Magnus, W., Karass, A., Solitar, D.: Combinatorial group theory. New York: Interscience 1966Google Scholar
  9. [P]
    Powell, J.: Two theorems on the mapping class group of surfaces. Proc. Amer. Math. Soc.68, 347–350 (1978)Google Scholar
  10. [R]
    Reinhart, B.L.: The winding number on 2-manifolds. Ann. Inst. Fourier (Grenoble)10, 271–283 (1960)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Dennis Johnson
    • 1
  1. 1.Jet Propulsion LaboratoryPasadenaUS

Personalised recommendations