Monatshefte für Mathematik

, Volume 72, Issue 3, pp 264–269 | Cite as

Good lattice points in the sense of Hlawka and Monte-Carlo integration

  • S. K. Zaremba


Lattice Point Good Lattice Good Lattice Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. C. van der Corput: Verteilungsfunktionen, Proc. Ned. Akad. van Wet., vol.38, pp. 1058–1066 (1935).Google Scholar
  2. [2]
    H. Hancock: Development of the Minkowski Geometry of Numbers, MacMillan, New York, 1939. (Reprinted by Dover, New York, 1964).Google Scholar
  3. [3]
    E. Hlawka: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura. App. (iv), vol.54, pp. 325 (1961).Google Scholar
  4. [4]
    E. Hlawka: Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math., vol.66, pp. 140–151 (1962).Google Scholar
  5. [5]
    J. F. Koksma: A general theorem from the theory of uniform distribution modulo 1, Mathematica Zutphen B, vol.11, pp. 7–11 (1942) [Dutch; quoted after Mathematical Reviews].Google Scholar
  6. [6]
    K. F. Roth: On irregularities of distribution, Mathematika, vol.1, pp. 73–79 (1954).Google Scholar
  7. [7]
    S. K. Zaremba: Good lattice points, discrepancy and numerical integration, Ann. Mat. Pura Appl. (iv), vol.73, pp. 293–317 (1966).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • S. K. Zaremba
    • 1
  1. 1.MadisonUSA

Personalised recommendations