Mathematische Annalen

, Volume 129, Issue 1, pp 417–423 | Cite as

On normal coordinates in Finsler spaces

  • Herbert Busemann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Seifert, u.W. Threlfall: Variationsrechnung im Großen. Leipzig 1938 und New York 1951.Google Scholar
  2. [2]
    W. Mayer: Riemannsche Geometrie, vol. II ofA. Duschek -W. Mayer, Lehrbuch der Differentialgeometrie. Leipzig 1930.Google Scholar
  3. [3]
    I. H. C. Whitehead: On the covering of a complete space by the geodesics through a point. Ann. of Math.36, 679–704 (1935).Google Scholar
  4. [4]
    T. Y. Thomas: On normal coordinates. Proc. Nat. Acad. Sci. USA22, 309–312 (1936).Google Scholar
  5. [5]
    H. Busemann: On geodesic curvature in two-dimensional Finsler spaces. Ann. di Mat. Ser. IV31, 281–295 (1950).Google Scholar
  6. [6]
    H. Rund: Eine Krümmungstheorie derFinslerschen Räume. Math. Ann.125, 1–18 (1952).Google Scholar
  7. [7]
    H. Busemann: Metric methods in Finsler spaces and in the foundations of geometry. Ann. Math. Studies8, Princeton 1942.Google Scholar
  8. [8]
    I. H. C. Whitehead: TheWeierstrass E-function in differential metric geometry. Quart. J. Oxford Ser.4, 291–296 (1933).Google Scholar

Copyright information

© Springer-Verlag 1955

Authors and Affiliations

  • Herbert Busemann
    • 1
  1. 1.Los Angeles

Personalised recommendations