Mathematische Annalen

, Volume 129, Issue 1, pp 417–423 | Cite as

On normal coordinates in Finsler spaces

  • Herbert Busemann


Finsler Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Seifert, u.W. Threlfall: Variationsrechnung im Großen. Leipzig 1938 und New York 1951.Google Scholar
  2. [2]
    W. Mayer: Riemannsche Geometrie, vol. II ofA. Duschek -W. Mayer, Lehrbuch der Differentialgeometrie. Leipzig 1930.Google Scholar
  3. [3]
    I. H. C. Whitehead: On the covering of a complete space by the geodesics through a point. Ann. of Math.36, 679–704 (1935).Google Scholar
  4. [4]
    T. Y. Thomas: On normal coordinates. Proc. Nat. Acad. Sci. USA22, 309–312 (1936).Google Scholar
  5. [5]
    H. Busemann: On geodesic curvature in two-dimensional Finsler spaces. Ann. di Mat. Ser. IV31, 281–295 (1950).Google Scholar
  6. [6]
    H. Rund: Eine Krümmungstheorie derFinslerschen Räume. Math. Ann.125, 1–18 (1952).Google Scholar
  7. [7]
    H. Busemann: Metric methods in Finsler spaces and in the foundations of geometry. Ann. Math. Studies8, Princeton 1942.Google Scholar
  8. [8]
    I. H. C. Whitehead: TheWeierstrass E-function in differential metric geometry. Quart. J. Oxford Ser.4, 291–296 (1933).Google Scholar

Copyright information

© Springer-Verlag 1955

Authors and Affiliations

  • Herbert Busemann
    • 1
  1. 1.Los Angeles

Personalised recommendations