Advertisement

Mathematische Annalen

, Volume 207, Issue 2, pp 87–97 | Cite as

A nullstellensatz and a positivstellensatz in semialgebraic geometry

  • Gilbert Stengle
Article

Keywords

Rational Representation Polynomial Inequality Real Algebraic Variety Real Closed Field Consequence Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubois, D. W.: A nullstellensatz for ordered fields. Ark. Mat.8, 111–114 (1969)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Stoer, J., Witzgall, C.: Convexity and optimization in finite dimensions. Chap. 1. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Jacobsen, N.: Lectures in abstract algebra, III. pp. 251–254, 269–294. Princeton-London-Toronto: Van Nostrand Co. 1964CrossRefGoogle Scholar
  4. 4.
    Lang, S.: Algebra, p. 278. Reading: Addison-Wesley, Publ. Co. Inc. 1965zbMATHGoogle Scholar
  5. 5.
    Robinson, A.: Introduction to model theory and to the metamathematics of algebra. pp. 214–224. Amsterdam: North Holland Publ. Comp. 1963zbMATHGoogle Scholar
  6. 6.
    Motzkin, T. S.: Algebraic inequalities. In “Inequalities”, (O. Shisha ed), Vol. 1, pp. 199–203. New York: Academic Press 1967Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Gilbert Stengle
    • 1
  1. 1.Department of MathematicsLehigh UniversityBethlehemUSA

Personalised recommendations