Mathematische Annalen

, Volume 166, Issue 3, pp 187–207 | Cite as

Ergodic theory and virtual groups

  • George W. Mackey


Ergodic Theory Virtual Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ambrose, W.: Representation of ergodic flows. Ann. Math.42, 723–739 (1941).Google Scholar
  2. [2]
    Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J.3, 83–89 (1951).Google Scholar
  3. [3]
    Effros, E.: Transformation groups andC* algebras. Ann. Math.81, 38–55 (1965).Google Scholar
  4. [4]
    Halmos, P. R.: Invariant measures. Ann. Math.48, 735–754 (1947).Google Scholar
  5. [5]
    Kakutani, S.: Induced measure preserving transformations. Proc. Imp. Acad. Tokyo19, 635–641 (1943).Google Scholar
  6. [6]
    Mackey, G. W.: Induced representations of locally compact groups. I. Ann. Math.55, 101–139 (1952).Google Scholar
  7. [7]
    —— Borel structures in groups and their duals. Trans. Am. Math. Soc.85, 134–165 (1957).Google Scholar
  8. [8]
    —— Unitary representations of group extensions I. Acta Math.99, 265–311 (1958).Google Scholar
  9. [9]
    —— Point realizations of transformation groups. Illinois J. Math.6, 327–335 (1962).Google Scholar
  10. [10]
    —— Infinite dimensional group representations. Bull. Am. Math. Soc.69, 628–686 (1963).Google Scholar
  11. [11]
    —— Ergodic theory, group theory, and differential geometry. Proc. Nat. Acad. Sci. U.S.50, 1184–1191 (1963).Google Scholar
  12. [12]
    Weil, A.: L'integration dans les groupes topologiques et ses applications. Actual. Sci. Ind. no. 869. Paris: Hermann et Cie. 1940.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • George W. Mackey
    • 1
  1. 1.Mathematics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations