Advertisement

Mathematische Annalen

, Volume 127, Issue 1, pp 453–474 | Cite as

Grundlagen einer Theorie der Frobeniuserweiterungen

  • Friedrich Kasch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    R. Brauer, C. Nesbitt: On the regular representation of algebras. Proc. Nat. Acad. Sc.23, 236 (1937).Google Scholar
  2. [2]
    C. J. Everett: Vektor spaces over rings. Bull. Amer. math. Sc.48, 312 (1942).Google Scholar
  3. [3]
    W. Gaschütz: Über den Fundamentalsatz vonMaschke zur Darstellungstheorie der endlichen Gruppen. Math. Z.56, 376 (1952).Google Scholar
  4. [4]
    M. Hall: A type of algebraic closure. Ann. of Math.40, 360 (1939).Google Scholar
  5. [5]
    M. Ikeda: On a theorem ofGaschütz. Osaka Math. J.5, 53 (1953).Google Scholar
  6. [6]
    F. Kasch: Halblineare Abbildungen und die Rangrelation bei galoisschen Erweiterungen. Arch. der Math. VI, 402 (1953).Google Scholar
  7. [7]
    T. Nakayama: On Frobenius Algebras I. Ann. of Math.40, 611 (1939).Google Scholar
  8. [8]
    T. Nakayama: On Frobenius Algebras II. Ann. of Math.42, 1 (1941).Google Scholar
  9. [9]
    T. Nakayama: Galois theory of simple rings. Trans. Amer. math. Sc.73, 276 (1952).Google Scholar
  10. [10]
    T. Nakayama: On two topics in the structural theory of rings (Galois theory of rings and Frobenius algebras). Proc. of the int. Congress of Math. II, 49 (1950).Google Scholar
  11. [11]
    T. Nakayama, H. Nagao: On the structure of (M o)- and (M u)-moduls. Math. Z.59, 164 (1953).Google Scholar
  12. [12]
    C. Nesbitt: On the regular representations of algebras. Ann. of Math.39, 634 (1938).Google Scholar
  13. [13]
    F. K. Schmidt: Algebraische Zahlentheorie II. Vorlesungsausarbeitung Münster, SS. 1950.Google Scholar
  14. [14]
    E. Witt: Theorie der quadratischen Formen in beliebigen Körpern. Journ. f. d. r. u. angew. Math.176, 31 (1937).Google Scholar

Copyright information

© Springer-Verlag 1954

Authors and Affiliations

  • Friedrich Kasch
    • 1
  1. 1.Göttingen

Personalised recommendations