Mathematische Annalen

, Volume 162, Issue 2, pp 258–279 | Cite as

Wave operators and similarity for some non-selfadjoint operators

  • Tosio Kato
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Dunford, N.: A survey of the theory of spectral operators. Bull. Am. Math. Soc.64, 217–274 (1958).Google Scholar
  2. [2]
    Fadeev, L. D.: On the Friedrichs model in the perturbation theory of continuous spectrum. Trudy Mat. Inst. im. V. A. Steklova73, 292–313 (1964) (Russian).Google Scholar
  3. [3]
    Friedrichs, K. O.: Über die Spektralzerlegung eines Integraloperators. Math. Ann.115, 249–272 (1938).Google Scholar
  4. [4]
    —— On the perturbation of continuous spectra. Comm. Appl. Math.1, 361–406 (1948).Google Scholar
  5. [5]
    Helson, H.: Lectures on invariant subspaces. New York-London: Academic Press 1964.Google Scholar
  6. [6]
    Hille, E., andR. S. Phillips: Functional analysis and semi-groups. Revised Ed. Am. Math. Soc. Colloq. Publ. Vol.31 (1957).Google Scholar
  7. [7]
    Hoffman, K.: Banach spaces of analytic functions. Englewood Cliffs: Prentice-Hall 1962.Google Scholar
  8. [8]
    Ikebe, T.: Eigenfunktion expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal.5, 1–34 (1960).Google Scholar
  9. [9]
    Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer-Verlag 1966.Google Scholar
  10. [10]
    Köthe, G.: Topologische lineare Räume, I. Berlin-Göttingen-Heidelberg: Springer-Verlag 1960.Google Scholar
  11. [11]
    Kuroda, S. T.: On the existence and the unitary property of the scattering operator. Nuovo Cimento12, 431–454 (1959).Google Scholar
  12. [12]
    Moser, J.: Störungstheorie des kontinuierlichen Spektrums für gewöhnliche Differentialgleichungen zweiter Ordnung. Math. Ann.125, 366–393 (1953).Google Scholar
  13. [13]
    Prosser, R. T.: Convergent perturbation expansions for certain wave operators. J. Mathematical Phys.5, 708–713 (1964).Google Scholar
  14. [14]
    Rejto, P. A.: On gentle perturbations, I and II. Comm. Pure Appl. Math.16, 279–303 (1963);17, 257–292 (1964).Google Scholar
  15. [15]
    Scadron, M., S. Weinberg, andJ. Wright: Functional analysis and scattering theory. Phys. Rev.135, B202–207 (1964).Google Scholar
  16. [16]
    Schwartz, J.: Some non-selfadjoint operators. Comm. Pure Appl. Math.13, 609–639 (1960).Google Scholar
  17. [17]
    Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Am. Math. Soc. Colloq. Publ. Vol.15 (1932).Google Scholar
  18. [18]
    Titchmarsh, E. C.: Introduction to the theory of Fourier integrals. Oxford University Press 1948.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Tosio Kato
    • 1
  1. 1.Berkeley

Personalised recommendations