Zeitschrift für Physik B Condensed Matter

, Volume 24, Issue 3, pp 273–278 | Cite as

Superconducting transition temperatures of amorphous binary alloy systems based on Bi, Pb, Ga and Be

  • J. Petersen


Quench condensed binary alloy films are produced by evaporation from two separated furnaces. The films contain the whole composition range of the respective alloy system in well defined arrangement.T c is measured as a function of concentration. Eight predominantly amorphous alloy systems are studied: Bi—Ga, Pb—Ga, Pb—Bi, Be—Bi, Be—Pb, Be—Ga, Be—Al, Be—Li. In Bi—Ga and Pb—GaT c is a linear function of concentration in the amorphous composition range. In Pb—BiT c has a maximum. All Be-alloys show lower transition temperatures than pure quench condensed Be. Except for Be—Li all systems have aT c minimum. The experiments are compared to aT c calculation using tunelling spectroscopy data. Except for the Be-alloys the agreement is satisfying.


Neural Network Evaporation Furnace Transition Temperature Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts-Report. NBS Techn. Note 482 (1969); NBS Techn. Note 724 (1972)Google Scholar
  2. 2.
    Buckel, W., Hilsch, R.: Z. Physik138, 109 (1954)Google Scholar
  3. 3.
    Lazarev, B.G., Sudovtsov, A.I., Smirnow, A.P.: Zh. Eksperim. i. Teor. Fiz.33, 1059 (1957) (Engl. transl.: Sov. Phys. JETP6, 816 (1958))Google Scholar
  4. 4.
    Bergmann, G.: Z. Physik255, 76 (1972)Google Scholar
  5. 5.
    Bergmann, G.: Phys. Rev. B7, 4850 (1973)Google Scholar
  6. 6.
    Petersen, J.: Appl. Phys.9, 283 (1976)Google Scholar
  7. 7.
    Granquist, C.G., Claeson, T.: J. Low Temp. Phys.13, 1 (1973)Google Scholar
  8. 8.
    Hasse, J., Seiberth, J.: Z. Physik213, 79 (1968)Google Scholar
  9. 9.
    Baier, P.: Z. Physik213, 89 (1968)Google Scholar
  10. 10.
    King, H.W., Russel, C.M., Hulbert, J.A.: Phys. Lett.20, 600 (1966)Google Scholar
  11. 11.
    Shier, J.S., Ginsberg, D.M.: Phys. Rev.147, 384 (1965)Google Scholar
  12. 12.
    Voigt, E., Petersen, J.: To be publishedGoogle Scholar
  13. 13.
    Fujime, S.: Jap. J. Appl. Phys.5, 778 (1966)Google Scholar
  14. 14.
    Glover, R.E. III: Private communicationGoogle Scholar
  15. 15.
    D'Ans-Lax: Taschenbuch für Chemiker und Physiker. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  16. 16.
    Superconductivity (edited by R.D. Parks). New York: Marcel Dekker Inc. 1969Google Scholar
  17. 17.
    Bergmann, G., Rainer, D.: Z. Physik263, 59 (1973)Google Scholar
  18. 18.
    McMillan, W.L.: Phys. Rev.167, 331 (1968)Google Scholar
  19. 19.
    Chen, T.T., Chen, J.T., Leslie, J.D., Smith, H.J.T.: Phys. Rev. Lett.22, 526 (1969)Google Scholar
  20. 20.
    Knorr, K., Barth, N.: Sol. Stat. Comm.8, 1085 (1970)Google Scholar
  21. 21.
    Chen, T.T., Leslie, J.D., Smith, H.J.T.: Physica (Netherlands)55, 439 (1971)Google Scholar
  22. 22.
    Granquist, C.G., Claeson, T.: Z. Physik B20, 13 (1975)Google Scholar
  23. 23.
    Tyzack, C., Raynor, G.V.: Acta Cryst.7, 505 (1954)Google Scholar
  24. 24.
    Eichler, A., Wittig, J.: Z. angew. Phys.25, 319 (1967)Google Scholar
  25. 25.
    Felsch, W., Glover, R.E. III: J. Vac. Sci. and Techn. (USA)9, 337 (1972)Google Scholar
  26. 26.
    Comberg, A., Ewert, S., Wühl, H.: Z. Physik B20, 165 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. Petersen
    • 1
  1. 1.I. Physikalisches InstitutUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations