Mathematische Annalen

, Volume 159, Issue 2, pp 105–114 | Cite as

Dually residuated lattice ordered semigroups

  • K. L. N. Swamy


Direct Product Boolean Algebra Distributive Lattice Residuated Lattice Boolean Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Birkhoff, G.: Lattice theory. Am. Math. Colloquium Publications (25) 1948.Google Scholar
  2. [2]
    Blumenthal, L. M.: Boolean geometry 1. Rend. Circ. Mat. Palermo, serie ii,1 (1952).Google Scholar
  3. [3]
    Choudhury, A. C.: The doubly distributivem-lattice. Bull. Calcutta. Math. Soc.47 (1957).Google Scholar
  4. [4]
    Mckinsey, J. C., andA. Tarski: On closed elements in closure algebras. Ann. Math.47 (1946).Google Scholar
  5. [5]
    Narasimhaswamy, K. L.: Autometrized lattice ordered groups 1. Math. Ann.154, 406–412 (1964).MathSciNetCrossRefGoogle Scholar
  6. [6]
    —— A general theory of autometrized algebras. Math. Ann.157, 65–74 (1964)MathSciNetCrossRefGoogle Scholar
  7. [7]
    Nordhaus, E. A., andLeo Lapidus: Brouwerian geometry. Canad. J. Math.6 (1954).Google Scholar
  8. [8]
    Ward, M., andR. P. Dilworth: Residuated lattices. Trans. Am. Math. Soc.45 (1939).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • K. L. N. Swamy
    • 1
  1. 1.WaltairIndia

Personalised recommendations