Advertisement

Mathematische Annalen

, Volume 223, Issue 1, pp 19–70 | Cite as

On ergodic flows and the isomorphism of factors

  • Wolfgang Krieger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H., Woods, E. J.: A classification of factors. Publ. RIMS Kyoto University Ser. A4 51–130 (1968)Google Scholar
  2. 2.
    Connes, A.: Groupe modulaire d'une algébre de von Neumann de genre dénombrable. C.R. Acad. Sci. Paris Ser. A274, 1923–1926 (1972)Google Scholar
  3. 3.
    Connes, A.: Une classification des facteur de type III. Ann. Scient. Ec. Norm. Sup. 4e série6, 133–252 (1973)Google Scholar
  4. 4.
    Dixmier, J.: Les algèbres d'operateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969Google Scholar
  5. 5.
    Dye, H. A.: On groups of measure preserving transformations I. Amer. J. Math.85, 119–159 (1959)Google Scholar
  6. 6.
    Krengel, U.: Darstellungssätze für Strömungen und Halbströmungen II. Math. Ann.182, 1–39 (1969)Google Scholar
  7. 7.
    Krieger, W.: On non-singular transformations of a measure space I. Z. Wahrscheinlichkeits-theorie verw. Geb.11, 83–97 (1969)Google Scholar
  8. 8.
    Krieger, W.: On non-singular transformations of a measure space II. Z. Wahrscheinlichkeits-theorie verw. Geb.11, 98–119 (1969)Google Scholar
  9. 9.
    Krieger, W.: On constructing non-*isomorphic hyperfinite factors of type III. J. Functional analysis6, 97–109 (1970)Google Scholar
  10. 10.
    Krieger, W.: On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space. Lecture Notes in Mathematics 160. Contributions to Ergodic theory and probability, pp. 158–177. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  11. 11.
    Krieger, W.: On a class of hyperfinite factors that arise from null-recurrent Markow chains. J. Funct. Analysis7, 27–42 (1971)Google Scholar
  12. 12.
    Krieger, W.: On the construction of factors from ergodic nonsingular transformations, Proceedings of the international school of physics “Enrico Fermi”, 23rd July – 4th August 1973,C*-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory. pp. 114–120. North Holland, Amsterdam, Società italiana di fisica, Bologna, 1976Google Scholar
  13. 13.
    Kubo, I.: Quasi-flows. Nagoya Math. J.35, 1–30 (1969)Google Scholar
  14. 14.
    Murray, F. J., von Neumann, J.: On rings of operators. Ann. of Math.37, 116–229 (1936)Google Scholar
  15. 15.
    von Neumann, J.: On rings of operators III. Ann. of Math.41, 94–161 (1940)Google Scholar
  16. 16.
    Phelps, R. P.: Lectures on Choquet's theorem. New York: Van Nostrand 1966Google Scholar
  17. 17.
    Powers, R. T.: Representations of uniformly hyperfinite algebras and the associated von Neumann rings. Ann. of Math.86, 138–171 (1967)Google Scholar
  18. 18.
    Takesaki, M.: The structure of a von Neumann algebra with a homogeneous periodic state. Acta Math.131, 79–121 (1973)Google Scholar
  19. 19.
    Takesaki, M.: Dualité dans les produits croisés des algébres de von Neumann. C.R. Acad. Sci. (Paris), Ser. A276, 41–44 (1973)Google Scholar
  20. 20.
    Takesaki, M.: Algébres de von Neumann proprement infinites et produits croisés. C.R. Acad. Sci. (Paris), Ser. A276, 125–128 (1973)Google Scholar
  21. 21.
    Takesaki, M.: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math.131, 249–310 (1973)Google Scholar
  22. 22.
    Varadarajan, V. S.: Groups of automorphisms of Borel spaces. Trans. Am. Math. Soc.109, 191–200 (1963)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Wolfgang Krieger
    • 1
  1. 1.Institut für Angewandte Mathematik der UniversitätHeidelbergFederal Republic of Germany

Personalised recommendations