Advertisement

Mathematische Annalen

, Volume 136, Issue 4, pp 326–338 | Cite as

A generalization of Boolean rings

  • Irving Sussman
Article

Keywords

Boolean Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Birkhoff, Garrett: Lattice Theory. American Mathematical Soc. Colloquium Publication23 (1939).Google Scholar
  2. [2]
    Forsythe, A., andN. McCoy: On the commutativity of certain rings. Bull. Amer. math. Soc.52 (1946).Google Scholar
  3. [3]
    Foster, A. L.:p k-rings and ring logics. Ann. Scuola Sup. Pisa 5 (1951).Google Scholar
  4. [4]
    Foster, A. L.:p rings and their Boolean-vector representation. Acta math.84 (1951).Google Scholar
  5. [5]
    Foster, A. L.: The idempotent elements of a commutative ring form a Boolean algebra. ...Duke math. J.13 (1946).Google Scholar
  6. [6]
    Foster, A. L.: Ring logics andp rings. U. of California Publications in Math.1, No. 10 (1951).Google Scholar
  7. [7]
    Foster, A. L.: Generalized “Boolean” theory of universal algebras. Math. Z.58 (1958).Google Scholar
  8. [8]
    Jacobson, N.: Structure theory for algebraic algebras of bounded degree. Ann. of math.46 (1945).Google Scholar
  9. [9]
    Krull, W.: Subdirekte Summen-Darstellung von Integritätsbereichen. Math. Z.52 (1950).Google Scholar
  10. [10]
    McCoy, N. H.: Rings and Ideals. Math. Ass. of America. Carus Monograph no. 8 (1948).Google Scholar
  11. [11]
    McCoy, N. H.: Subrings of direct sums. Amer. J. Math.40 (1938).Google Scholar
  12. [12]
    McCoy, N. H.: Subdirect sums of rings. Bull. Amer. math. Soc.53 (1947).Google Scholar
  13. [13]
    McCoy, N. H., andD. Montgomery: A representation of generalized Boolean rings. Duke math. J.3 (1937).Google Scholar
  14. [14]
    Neumann, J. von: On regular rings. Proc. nat. Acad. Sci.22 (1936).Google Scholar
  15. [15]
    Stone, M. H.: The theory of representations for Boolean Algebras. Trans. Amer. math. Soc.40 (1936).Google Scholar

Copyright information

© Springer-Verlag 1958

Authors and Affiliations

  • Irving Sussman
    • 1
  1. 1.Santa Clara

Personalised recommendations