Advertisement

Mathematische Annalen

, Volume 210, Issue 2, pp 83–104 | Cite as

Equivariant cohomology and stable cohomotopy

  • Czes Kosniowski
Article

Keywords

Equivariant Cohomology Stable Cohomotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bredon, G. E.: Equivariant cohomology theories. Lecture Notes in Mathematics, Vol. 34. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  2. 2.
    Bredon, G. E.: Introduction to compact transformation groups. Pure and Applied Mathematics Series. New York: Academic Press 1972Google Scholar
  3. 3.
    tom Dieck, T.: Lokalisierung äquivarianter Kohomologie-Theorien. Math. Z.121, 253–262 (1971)Google Scholar
  4. 4.
    tom Dieck, T.: Bordism ofG-manifolds and integrality theorems. Topology 9, 345 to 358 (1970)Google Scholar
  5. 5.
    Dress, A.: A characterization of solvable groups. Math. Z.110, 213–217 (1969)Google Scholar
  6. 6.
    Dress, A.: Contributions to the theory of induced representations in “Classical” algebraicK-theory, and connections with arithmetic, 183–240. Lecture Notes in Mathematics, Vol.342. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  7. 7.
    Kosniowski, C.: Localizing the Burnside ring. Math. Ann.204, 93–96 (1973)Google Scholar
  8. 8.
    Kramer, H.: On the singularities of the Burnside ring of a finite group. Papers from Open House for Algebraists, Aarhus University, Various publ. ser.17, 53–71 (1970)Google Scholar
  9. 9.
    Lee, C. N.: Equivariant Homology theories. Proc. Conference on Transformation Groups, 237–244. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  10. 10.
    O'Connor, J. J.: D. Phil. thesis. Oxford UniversityGoogle Scholar
  11. 11.
    Palais, R. S.: Seminar on transformation groups, A. Borelet al. Ann. of Math. Studies No.46, Princeton (1960)Google Scholar
  12. 12.
    Segal, G.: Classifying spaces and spectral sequences. Publ. Math. I.H.E.S.34, 105–112 (1968)Google Scholar
  13. 13.
    Segal, G.: EquivariantK-theory. Publ. Math. I.H.E.S.34, 129–151 (1968)Google Scholar
  14. 14.
    Segal, G.: Equivariant stable homotopy theory. Actes. Congres Intern. Math.2, 59–63 (1970)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Czes Kosniowski
    • 1
  1. 1.Department of MathematicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations