Advertisement

Mathematische Annalen

, Volume 247, Issue 1, pp 1–20 | Cite as

On the resolution of cusp singularities and the Shintani decomposition in totally real cubic number fields

  • E. Thomas
  • A. T. Vasquez
Article

Keywords

Number Field Cusp Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, A., Mumford, D., Rapoport, M., Tai, Y.: Smooth compactifications of locally symmetric varieties. Brookline, Mass.: Mathematical Sciences Press 1975Google Scholar
  2. 2.
    Berwick, W.H.H.: Algebraic number fields with two independent units, Proc. London Math. Soc. (2)34, 360–78 (1932)Google Scholar
  3. 3.
    Cohn, H.: Formal ring of a cubíc solid angle. J. Number Theory10, 135–50 (1978)Google Scholar
  4. 4.
    Delone, B.N., Faddeev, D.K.: The theory of irrationalities of the third degree. Translations of Mathematical Monographs, Vol. 10. Providence, R.I.: American Mathematical Society 1964Google Scholar
  5. 5.
    Ehlers, F.: Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten. Math. Ann.218, 127–56 (1975)Google Scholar
  6. 6.
    Fujiki, A.: On resolutions of cyclic quotient singularities. Publ. RIMS, Kyoto Univ.10, 293–328 (1974)Google Scholar
  7. 7.
    Hasse, H.: Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Math. Abh.3, 289–379 (1975)Google Scholar
  8. 8.
    Hirzebruch, F.: The Hilbert modular group, resolution of the singularities at the cusps and related problems. Sem. Bourbaki no. 396 1970/71Google Scholar
  9. 9.
    Hirzebruch, F.: Hilbert Modular surfaces. L'Enseignement Math.19, 183–281 (1974)Google Scholar
  10. 9a.
    Nagell, T.: Zur Arithmetik der Polynome. Abh. Math. Sem. Univ. Hamburg1, 179–194 (1922)Google Scholar
  11. 10.
    Nakamula, K.: On a fundamental domain forR +3. J. Fac. Sci. University of Tokyo, Sect. 1A, Vol. 24 701–13 (1977)Google Scholar
  12. 11.
    Satake, I.: On the arithmetic of tube domains. Bull. Am. Math. Soc.79, 1076–94 (1973)Google Scholar
  13. 12.
    Satake, I.: On the blowing-ups of Hilbert modular surfaces. J. Fac. Sci. University of Tokyo, Sect. 1A24, 221–9 (1977)Google Scholar
  14. 13.
    Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. University of Tokyo, Sect. 1A23, 393–417 (1976)Google Scholar
  15. 14.
    Stender, H.J.: Einheiten für eine allgemeine Klasse total reeller algebraischer Zahlkörper. J. Reine Angew. Math.257, 151–78 (1972)Google Scholar
  16. 15.
    Thomas, E.: Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math.310, 33–55 (1979)Google Scholar
  17. 16.
    Zagier, D.: A Kronecker limit formula for real quadratic fields. Math. Ann.213, 153–184 (1975)Google Scholar
  18. 17.
    Zagier, D.: Valeurs des fonctions zeta des corps quadratiques reel aux entiers negatifs. Asterisque, no. 41–42, Soc. Math. de France, 1977Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • E. Thomas
    • 1
  • A. T. Vasquez
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Graduate SchoolCUNYNew YorkUSA

Personalised recommendations