Mathematische Annalen

, Volume 201, Issue 2, pp 97–112 | Cite as

Invariante holomorphe Funktionen auf reduktiven Liegruppen

  • Wolf Barth
  • Michael Otte
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bialniky-Birula, Hochschild, G., Mostow, G. D.: Extensions of representations of algebraic linear groups. Am. J. of Math.85, 131–144 (1963).Google Scholar
  2. 2.
    Borel, A.: Groupes lineares algébriques. Ann. of Math.64, 20–82 (1956).Google Scholar
  3. 3.
    Bott, R.: Homogeneous vectorbundles. Ann. of Math.66, 203–248 (1957).Google Scholar
  4. 4.
    Chevalley, C.: Groupes algébriques. Paris: Hermann 1968.Google Scholar
  5. 5.
    Freudenthal, H., de Vries, H.: Linear Lie groups. New York: Academic Press 1969.Google Scholar
  6. 6.
    Goto, M.: On algebraic homogenous spaces. Am. J. of Math.76, 811–818 (1954).Google Scholar
  7. 7.
    Harish-Chandra: Discrete series for semisimple Lie groups. II. Acta Math.116, 1–111 (1966).Google Scholar
  8. 8.
    Hartshorne, R.: Ample subvarieties of algebraic Varieties. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  9. 9.
    Hochschild, G., Mostow, G. D.: Representations and representative functions of Lie groups III. Ann. of Math.70, 85–100 (1959).Google Scholar
  10. 10.
    Hochschild, G., Mostow, G. D.: Affine embeddings of complex analytic homogeneous spaces. Am. J. of Math.87 (1965).Google Scholar
  11. 11.
    Jacobson, N.: Lie algebras. New York: Interscience (Wiley & Sons) 1962.Google Scholar
  12. 12.
    Malcev, A.: On the theory of Lie groups in the large. Rec. Math.16 (1945).Google Scholar
  13. 13.
    Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Journ.16 (1960).Google Scholar
  14. 14.
    Narasimhan, R.: Compact analytical varieties. L'Enseign. Math.,17, 75–98 (1968).Google Scholar
  15. 15.
    Remmert, R.: Komplexe abelsche Gruppen. (Manuskript).Google Scholar
  16. 16.
    Serre, J. P.: Géométrie algébrique et géométrie analytique. Ann. Jnst. Fourier6, 1–42 (1955/56).Google Scholar
  17. 17.
    Serre, J. P.: Groupes algébriques et corps de classes, ASI Nr. 1264. Paris: Hermann 1959.Google Scholar
  18. 18.
    SGA: Grothendieck, A.: Revêtement étales et groupe fondamental, Sem. Geom. Alg., I.H.E.S., 1960/61.Google Scholar
  19. 19.
    Tits, J.: Free subgroups in linear groups. Erscheint in Journ. of Algebra.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Wolf Barth
    • 1
  • Michael Otte
    • 2
  1. 1.Math. Instituut LeidenNederlande
  2. 2.Mathematisches InstitutMünsterBundesrepublik Deutschland

Personalised recommendations