Advertisement

Integral Equations and Operator Theory

, Volume 16, Issue 2, pp 277–304 | Cite as

The local invariant factors of a product of holomorphic matrix functions: The order 4 case

  • G. Philip
  • A. Thijsse
Article

Abstract

Let\(\lambda ^{\alpha _n } |\lambda ^{\alpha _{n - 1} } |...|\lambda ^{\alpha _2 } |\lambda ^{\alpha _1 } \), resp.\(\lambda ^{\beta _n } |\lambda ^{\beta _{n - 1} } |...|\lambda ^{\beta _2 } |\lambda ^{\beta _1 }\) be the (given) invariant factors of the square matricesA, resp.B of ordern over the ring of germs of holomorphic functions in 0 such that detA(λ)B(λ)≠0, λ≠0. A description of all possible invariant factors\(\lambda ^{\gamma _n } |\lambda ^{\gamma _{n - 1} } |...|\lambda ^{\gamma _2 } |\lambda ^{\gamma _1 }\) of the productC=AB is given in the following cases: (i)β1 (or α1)≤2; (ii)β3 = 0 (α3= 0); (iii) α1−α2, β1β m ≤1,α2+1βm+1−0. These results, which hold for arbitraryn, are complemented with a few results leading to the description of all possible exponents γ1234 for arbitrary α1234 β1234 in the case where the ordern≤4.

1991 Mathematics Subject Classification

15A54 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Azenhas and E. Marques de Sa: Matrix realizations of Littlewood — Richardson Sequences, Lin. Multilin. Alg. 27 (1990), 229–242.Google Scholar
  2. [2]
    I. Cohberg and M.A. Kaashoek: Unsolved problems in matrix and operator theory, II. Partial multiplicities for products, Integral Equations Operator Theory 2 (1979), 116–120.Google Scholar
  3. [3]
    T. Klein: The multiplication of Schur-functions and extensions ofp-modules, J. London Math. Soc. 43 (1968), 280–284.Google Scholar
  4. [4]
    T. Klein: The Hall polynomial, J. Algebra 12 (1969), 61–78.Google Scholar
  5. [5]
    D.E. Littlewood and A.R. Richardson: Group characters and algebra, Phil. Trans. Roy. Soc. A 233 (1934), 99–141.Google Scholar
  6. [6]
    L. Rodman and M. Schaps: On the partial multiplicities of a product of two matrix polynomials, Integral Equations Operator Theory 2 (1979), 565–599.Google Scholar
  7. [7]
    E.I. Sigal: Partial multiplicities of a product of operator fuctions, Mat. Issled. 8 (4) (1973),65–79 [Russian].Google Scholar
  8. [8]
    G.Ph.A. Thijsse: Rules for the partial multiplicities of the product of holomorphic matrix functions. Integral Equations Operator Theory 3 (1980), 515–528.Google Scholar
  9. [9]
    G.Ph.A. Thijsse: Partial multiplicities of products of holomorphic matrix functions, Habilitationschrift Universität Dortmund, Dortmund 1984, Report nr. 294, Wiskundig Seminarium, Vrije Universiteit, Amsterdam, 1985 (revised version).Google Scholar
  10. [10]
    G.Ph.A. Thijsse: Symmetry properties of and reduction principles for divisibility relations between the invariant factors of products of holomorphic matrix functions. Report nr. 9016/B, Econometrisch Instituut, Erasmus Universiteit Rotterdam, 1990.Google Scholar
  11. [11]
    G.Ph.A. Thijsse: Symmetry properties of and reduction principles for divisibility relations between the invariant factors of products of holomorphic matrix functions. Preprint 1990.Google Scholar
  12. [12]
    R.C. Thompson: An inequality for invariant factors, Proc. Amer. Math. Soc., 86 (1982), 9–11.Google Scholar
  13. [13]
    R.C. Thompson: Smith invariants of a product of integral matrices, Contemporary Mathematics, AMS, 47 (1985), 401–434.Google Scholar
  14. [14]
    R.C. Thompson: Divisibility relations satisfied by the invariant factors of a matrix product, Operator Theory: Advances and Applications 40 (1989), 471–491.Google Scholar
  15. [15]
    I. Zaballa: Inequalitities for the Weyr Characteristic of Modules, Algebra Lineal y aplicaciones, Universidad del Pais Vasco, 1984, 432–442.Google Scholar
  16. [16]
    I. Zaballa: Increasing and decreasing Littlewood-Richardson sequences and Duality, Preprint, 1992.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • G. Philip
    • 1
  • A. Thijsse
    • 1
  1. 1.Econometrisch InstituutErasmus UniversiteitROTTERDAMThe Netherlands

Personalised recommendations