manuscripta mathematica

, Volume 62, Issue 4, pp 417–435 | Cite as

Smooth surfaces of degree 9 in G(1,3)

  • Alessandro Verra
Article

Abstract

Let S⊂G(1,3)⊂p5 be a smooth, irreducible, non degenerate surface in the complex grassmannian G(1,3). Assume deg(S)=9, we show that S is one of the following surfaces:
  1. (a)

    A K3 surface blown up in one point.

     
  2. (b)

    The image of P2 by the linear system\(\left| {O_{P^2 } (6) - 2b_1 - \ldots - 2b_5 - b_6 - \ldots - b_{12} } \right|\)

     
  3. (c)

    The image of P2 by the linear system\(\left| {O_{P^2 } (7) - 2b_1 - \ldots - 2b_{10} } \right|\).

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [2]
    ARBARELLO E., CORNALBA M., GRIFFITHS P., HARRIS J.: Geometry of Algebraic Curves I, Berlin-Heidelberg-New York, Springer 1984Google Scholar
  2. [3]
    ARRONDO E., Sols I.: Classification of smooth congruences of low degree, preprint, 1987Google Scholar
  3. [4]
    BARTH W., PETERS C., VAN De VEN A.: Compact complex surfaces, Berlin-Heidelberg-New York, Springer 1984Google Scholar
  4. [5]
    BEAUVILLE A.: Surfaces Algebriques Complexes, Astérisque54, 1978Google Scholar
  5. [6]
    KLEIMAN S.: The transversality of a general translate, Comp. Math.28, 287–297 1974Google Scholar
  6. [7]
    BORDIGA G.: Di una certa congruenza del terzo ordine e della sesta classe dello spazio ordinario, Rend. Ace. Lincei4, 8–13 1890Google Scholar
  7. [9]
    EIN L.: Surfaces with a hyperelliptic hyperplane section, Duke math. J.50, 685–694, 1984Google Scholar
  8. [10]
    FANO G.: Studio di alcuni sistemi di rette considerati come superficie dello spazio a cinque dimensioni, Ann. Mat. pura appl.21, 141–192, 1893Google Scholar
  9. [11]
    GRIFFITHS P., HARRIS J.: Priciples of Algebraic Geometry, New York, Wiley and S., 1978Google Scholar
  10. [12]
    HARTSHORNE R.: Algebraic Geometry, Berlin-Heidelberg-New York, Springer 1977Google Scholar
  11. [13]
    LIVORNI E.L.: Classification of algebraic non ruled surfaces with sectional genus less or equal to six, Nagoya Math. J.100, 1–9, 1985Google Scholar
  12. [14]
    LIVORNI E.L.: Classification of algebraic surfaces with sectional genus less or equal to six: Rational surfaces, Pac. J. of Math.113, 93–113, 1984Google Scholar
  13. [15]
    LIVORNI E.L.: Classification of algebraic surfaces with sectional genus less or equal to six; ruled surfaces with dim ΦK⊗L(X)=2, Math. Scand.58, 9–29, 1986Google Scholar
  14. [16]
    LIVORNI E.L.: Classification of algebraic surfaces with sectional genus less or equal to six; ruled surfaces with dim ΦK⊗L(X)=1, Can. J. Math.37, 1110–1121, 1986Google Scholar
  15. [17]
    OKONEK C.: Flaechen vom grad 8 in P4, Math. Zeits.191, 207–223, 1986Google Scholar
  16. [18]
    OKONEK C.: Moduli reflexiver Garben und Flaechen vom Kleinem Grad in P4, Math. Zeits.184, 549–572, 1983Google Scholar
  17. [19]
    OKONEK C.: Ueber 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in P4 und P5, Math. Zeits.187, 209–219, 1984Google Scholar
  18. [20]
    PAPANTONOPOULOU A.: Embeddings in G(1,3), Proc. A.M.S.89,583–586, 1983Google Scholar
  19. [21]
    RAN Z.: Surfaces of order 1 in Grassmannians, J.f.d. Reine u. Angew. Mathematik362, 1986Google Scholar
  20. [22]
    REIDER I.: Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math.127, 309–316, 1988Google Scholar
  21. [23]
    SAINT DONAT D.: Projective models of K3 surfaces, Am. J. Math.96, 602–639, 1974Google Scholar
  22. [24]
    SOMMESE A.J.: Hyperplane sections of projective surfaces I - The Adjunction mapping, Duke Math. J.46, 377–401, 1979Google Scholar
  23. [25]
    SOMMESE A.J., VAN DE VEN A.: On the Adjunction mapping, Math. Ann.278, 593–603, 1987Google Scholar
  24. [26]
    VAN DE VEN A.: On the 2-connectedness of very ample divisors on a surface, Duke Math. J.46, 403–407, 1979Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Alessandro Verra
    • 1
  1. 1.Istituto di Matematica, Facoltà di ArchitetturaUniversità di NapoliNapoli

Personalised recommendations