Advertisement

Mathematische Annalen

, Volume 212, Issue 3, pp 215–248 | Cite as

On the cohomology groups of moduli spaces of vector bundles on curves

  • G. Harder
  • M. S. Narasimhan
Article

Keywords

Modulus Space Vector Bundle Cohomology Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas, (SGA4), Tom 2. Lecture Notes in Mathematics, No. 270, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. 2.
    Artin, M., Grothendieck, A., Verdier, J.L.: Theorie des topos et cohomologie étale des schémas, (SGA4), Tom 3. Lecture Notes in Mathematics, No. 305, Berlin-Heidelberg-New York: Springer 1973Google Scholar
  3. 3.
    Bourbaki, N.: Eléments de mathématiques, Integration, LivreVI. Paris: Hermann 1969Google Scholar
  4. 4.
    Deligne, P.: La conjecture de Weil I. Publ. Math. IHES, No. 43, Paris: Presses Universitaires de France 1974Google Scholar
  5. 5.
    Giraud, J.,et al.: Dix exposés sur la cohomologie des schémas. Amsterdam: North-Holland Publ. Co. 1968Google Scholar
  6. 6.
    Grothendieck, A.: Géométrie formelle et géométrie algébrique. Seminaire Bourbaki, t11, (1958/59), No. 182Google Scholar
  7. 7.
    Grothendieck, A.: Formule de Lefschetz et rationalité de fonctionsL. Séminaire Bourbaki (1964–65), No. 279Google Scholar
  8. 8.
    Harder, G.: Minkowskische Reduktionstheorie über Funktionenkörpern. Invent. math.7, 33–54 (1969)Google Scholar
  9. 9.
    Harder, G.: Eine Bemerkung zu einer Arbeit von P. E. Newstead. Jour. für Math.242, 16–25 (1970)Google Scholar
  10. 10.
    Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik. Berlin-Heidelberg-New York: Springer 1965Google Scholar
  11. 11.
    Narasimhan, M.S., Ramanan, S.: Deformations of moduli spaces of Vector bundles on curves (to appear in Ann. of Math.)Google Scholar
  12. 12.
    Narasimhan, M.S., Ramanan, S.: Generalized Prym varieties as fixed points (to appear in Jour. Ind. Math. Society)Google Scholar
  13. 13.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math.82, 540–567 (1965)Google Scholar
  14. 14.
    Serre, J.P.: Groups algébriques et Corps de classes. Paris: Hermann 1959Google Scholar
  15. 15.
    Serre, J.P.: Corps locaux. Paris: Hermann 1968Google Scholar
  16. 16.
    Serre, J.P.: Cohomologie galoisiénne. Springer Lecture Notes 5, Berlin-Göttingen-Heidelberg: Springer 1964Google Scholar
  17. 17.
    Seshadri, C.S.: Space of unitary vector bundles on a compact Riemann surface. Ann. of Math.85, 303–336 (1967)Google Scholar
  18. 18.
    Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. of Math.95, 511–556 (1972)Google Scholar
  19. 19.
    Weil, A.: Adeles and algebraic groups. Lecture Notes. Princeton: 1961Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Harder
    • 1
  • M. S. Narasimhan
    • 2
  1. 1.Sonderforschungsbereich 40 Mathem. InstitutBonnGermany
  2. 2.Tata Institute for Fundamental ResearchBombay 5India

Personalised recommendations