Mathematische Annalen

, Volume 206, Issue 4, pp 265–283 | Cite as

On continued fractions and finite automata

  • George N. Raney


Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Detlovs, V. K.: Equivalence of normal algorithms and recursive functions. (Russian). Trudy Mat. Inst. Steklov.52, 75–139 (1958)Google Scholar
  2. 2.
    Hall, M.: On the sum and product of continued fractions. Ann. of Math.48, 966–993 (1947)Google Scholar
  3. 3.
    Hurwitz, A.: Über die Kettenbruch-Entwicklung der Zahl e. Phys.-ökon. Ges., Königsberg (1891). Mathematische Werke, Bd. 2, 129–133, Basel: Birkhäuser 1933Google Scholar
  4. 4.
    Hurwitz, A.: Über die angenäherte Darstellungen der Zahlen durch rationale Brüche. Math. Ann.44, 417–436 (1894)Google Scholar
  5. 5.
    Raney, G. N.: Generalization of the Fibonacci sequence ton dimensions. Canad. J. Math.18, 332–349 (1966)Google Scholar
  6. 6.
    Salomaa, A.: Theory of Automata. (International Series of Monographs in Pure and Applied Mathematics, vol. 100.) Oxford: Pergamon Press, 1969Google Scholar
  7. 7.
    Sanov, I. N.: A property of a representation of a free group. (Russian). Doklady Akad. Nauk SSSR57, 657–659 (1947)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • George N. Raney
    • 1
  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations